1. Whole Genome Sequencing of Primary Immunodeficiency reveals a role for common and rare variants in coding and non-coding sequences
- Author
-
Thaventhiran, James E. D., Allen, Hana Lango, Burren, Oliver S., Farmery, James H. R., Staples, Emily, Zhang, Zinan, Rae, William, Greene, Daniel, Simeoni, Ilenia, Maimaris, Jesmeen, Penkett, Chris, Stephens, Jonathan, Deevi, Sri V.V., Sanchis-Juan, Alba, Gleadall, Nicholas S, Thomas, Moira J., Sargur, Ravishankar B., Gordins, Pavels, Baxendale, Helen E., Brown, Matthew, Tuijnenburg, Paul, Worth, Austen, Hanson, Steven, Linger, Rachel, Buckland, Matthew S., Rayner-Matthews, Paula J., Gilmour, Kimberly C., Samarghitean, Crina, Seneviratne, Suranjith L., Lyons, Paul A., Sansom, David M., Lynch, Andy G., Megy, Karyn, Ellinghaus, Eva, Ellinghaus, David, Jorgensen, Silje F., Karlsen, Tom H, Stirrups, Kathleen E., Cutler, Antony J., Kumararatne, Dinakantha S., Savic, Sinisa, Burns, Siobhan O., Kuijpers, Taco W., Turro, Ernest, Ouwehand, Willem H., Thrasher, Adrian J., and Smith, Kenneth G. C.
- Abstract
Primary immunodeficiency (PID) is characterised by recurrent and often life-threatening infections, autoimmunity and cancer, and it presents major diagnostic and therapeutic challenges. Although the most severe forms present in early childhood, the majority of patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent, and up to 10% develop lymphoid malignancies. Consequently, in sporadic PID genetic diagnosis is difficult and the role of genetics is not well defined. We addressed these challenges by performing whole genome sequencing (WGS) of a large PID cohort of 1,318 subjects. Analysis of coding regions of 886 index cases found disease-causing mutations in known monogenic PID genes in 8.2%, while a Bayesian approach (BeviMed 1 ) identified multiple potential new disease-associated genes. Exploration of the non-coding space revealed deletions in regulatory regions which contribute to disease causation. Finally, a genome-wide association study (GWAS) identified novel PID-associated loci and uncovered evidence for co-localisation of, and interplay between, novel high penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to variable penetrance and phenotypic complexity in PID. Thus, a cohort-based WGS approach to PID diagnosis can increase diagnostic yield while deepening our understanding of the key pathways determining variation in human immune responsiveness.
- Published
- 2018
- Full Text
- View/download PDF