1. INSPIRE-SAT7: Pre-Flight radiometric validation and calibration of a miniaturized Earth’s Radiative Budget satellite
- Author
-
Lionel Van Laeken, David Bolsée, Nuno Pereira, Mustapha Meftah, Alain Sarkissian, Luc Damé, Christophe Dufour, and the INSPIRE-SAT team
- Abstract
INSPIRE-SAT 7 is a French 2-Unit CubeSat primarily designed for Earth and Sun observations. This mission is part of the International Satellite Program in Research and Education (INSPIRE). This satellite will be deployed in Low Earth Orbit (LEO) in 2023 as the first step of the so-called ‘Terra-F’ constellation that will provide spatio-temporal resolution for Earth Energy Imbalance (EEI) measurements. This new scientific and technological pathfinder CubeSat mission (INSPIRE-SAT 7) is equipped with various channels on all sides. Among them: the Total Solar Irradiance Sensor (TSIS) payload, the Ultra-Violet Sensor (UVS) using a new generation of solar blind detectors designed to monitor the integrated Solar Spectral Irradiance (SSI) in the Hertzberg continuum, and the Earth Radiative Sensor (ERS) payload, designed to measure some Earth’s Radiative budget (ERB) components such as the outgoing short and long wave radiation at the top-of-the atmosphere for climate change studies. The Belgian Radiometry Characterization Laboratory (B.RCLab) of the Royal Belgian Institute for Space Aeronomy (BIRA-IASB) is the partner responsible for the pre-flight absolute calibration and radiometric characterization of INSPIRE-SAT7 TSIS and UVS payloads. In this work we will first describe the INSPIRE-SAT7 concept, design, scientific and operational objectives. We will then present B.RCLab facilities along with its radiometric characterization benches, including the absolute calibration capabilities and its traceability. Finally, the main results of the INSPIRE-SAT7 pre-flight calibration campaign, which took place in November 2022, will be presented. These results allowed to calculate the sensors on-orbit calibration coefficients that are crucial to perform traceable absolute EEI measurements. A radiometric comprehensive uncertainty budget will be presented along the sensors’ calibration coefficients.
- Published
- 2023