1. Contrasting biopore production by deep and shallow rooting rice cultivars in compacted paddy soils and the impacts on subsequent rice growth
- Author
-
Md Dhin Islam, Adam H. Price, and Paul D. Hallett
- Abstract
Rice is often grown as multiple crops in one year, with reduced tillage upland cropping following flooded cropping gaining prominence due to water use, soil degradation and labour demands. This study explored whether a deep rather than shallow rooting rice cultivar grown in a flooded cropping cycle, benefited deeper root growth of follow-on rice in an upland, reduced tillage cropping cycle. In a greenhouse study, a simulated flooded paddy was planted with deep (Black Gora) and shallow (IR64) root cultivars and a plant-free control. Artificial plough pans were made in between the topsoil and subsoil to form different treatments with no plough pan (0.35 MPa), soft plough pan (1.03 MPa) and hard plough pan (1.70 MPa). After harvest of this ‘first season’ rice, the soil was drained and undisturbed to simulate zero-tillage upland, with a photoperiod insensitive variety (BRRI Dhan 28) planted. Root length, root surface area, root volume, root diameter, number of root tips and branches were measured. The number of roots penetrating the plough pan was measured from camera images and X-ray CT. The overall root length density (RLD), root surface area, number of root tips and branching of BRRI Dhan 28 did not vary between plough pan and no plough pan treatments. Compared to the shallow rooting rice genotype, the deep rooting rice genotype as a ‘first season’ crop promoted 19 % greater RLD, 34 % greater surface area and 29 % more branching of BRRI Dhan 28 in the subsoil. In the topsoil, however, BRRI Dhan 28 had 28 % greater RLD, 35 % greater surface area and 43 % more branching for the shallow rather deep rooting genotype planted in the ‘first season’. The results suggest that rice cultivar selection for a paddy cycle affects root growth of a follow-on rice crop grown under no-till, with benefits to subsoil access from deep rooting cultivars and topsoil proliferation for shallow rooting cultivars.
- Published
- 2023