15 results on '"S. Houweling"'
Search Results
2. Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010
- Author
-
S. Pandey, S. Houweling, M. Krol, I. Aben, F. Chevallier, E. J. Dlugokencky, L. V. Gatti, M. Gloor, J. B. Miller, R. Detmers, T. Machida, and T. Röckmann
- Abstract
This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can heavily bias column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and CO2 (Xratio) have been used. We apply the ratio inversion method described in Pandey et al. (2015) to retrievals from the Greenhouse Gas Observing SATellite (GOSAT). The ratio inversion method uses the measured Xratio as a weak constraint on CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005) prescribes atmospheric CO2 fields and optimizes only CH4 fluxes. The TM5-4DVAR inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy inversions using model-derived-XCO2 mixing ratios (XCO2model) from CarbonTracker and MACC. The performance of the inverse models is evaluated using aircraft measurements from the HIPPO, CONTRAIL and AMAZONICA projects. Xratio and XCO2model are compared with TCCON retrievals to quantify the relative importance of errors in these components of the proxy XCH4 retrieval (XCH4proxy). We find that the retrieval errors in Xratio (mean = 0.61 %) are generally larger than the errors in XCO2model (mean = 0.24 % and 0.01 % for CarbonTracker and MACC, respectively). On the annual time scale, the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in XCO2model do not limit the overall accuracy of the CH4 flux estimates. On the seasonal time scale, however, larger differences are found due to uncertainties in XCO2model, particularly over Australia and in the tropics. The ratio method stays closer to the a priori CH4 flux in these regions, because it is capable of simultaneously adjusting the CO2 fluxes. Over Tropical South America, comparison to independent measurements shows that CO2 fields derived from the ratio method are less realistic than those used in the proxy method. However, the CH4 fluxes are more realistic, because the impact of unaccounted systematic uncertainties is more evenly distributed between CO2 and CH4. The ratio inversion estimates an enhanced CO2 release from Tropical South America during the dry season of 2010, which is in accordance with the findings of Gatti et al. (2014) and Vanderlaan et al. (2015). The performance of the ratio method is encouraging, because despite the added non-linearity due to the assimilation of Xratio and the significant increase in the degree of freedom by optimizing CO2 fluxes, still consistent results are obtained.
- Published
- 2016
- Full Text
- View/download PDF
3. Supplementary material to 'Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions'
- Author
-
A. Babenhauserheide, S. Basu, S. Houweling, W. Peters, and A. Butz
- Published
- 2015
- Full Text
- View/download PDF
4. Supplementary material to 'Global CO2 fluxes estimated from GOSAT retrievals of total column CO2'
- Author
-
S. Basu, S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy
- Published
- 2013
- Full Text
- View/download PDF
5. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2
- Author
-
S. Basu, S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy
- Abstract
We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved from the Greenhouse gases Observing SATellite (GOSAT). We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land-sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a) reduces the estimated global land sink of CO2, and (b) shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source-sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.
- Published
- 2013
- Full Text
- View/download PDF
6. TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere
- Author
-
P. K. Patra, S. Houweling, M. Krol, P. Bousquet, D. Belikov, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, K. Corbin, A. Fortems-Cheiney, A. Fraser, E. Gloor, P. Hess, A. Ito, S. R. Kawa, R. M. Law, Z. Loh, S. Maksyutov, L. Meng, P. I. Palmer, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson
- Abstract
A transport model intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. The transport and removal of six CH4 tracers with different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations and interhemispheric gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. We find that the interhemispheric exchange rate (1.39 ± 0.18 yr) derived from SF6 is faster by about 11 % in the 2000s compared to the 1990s. Up to 60 % of the interannual variations in the forward CH4 simulations can be explained by accounting for the interannual variations in emissions from biomass burning and wetlands. We also show that the decadal average growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus to the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little interannual variability due to transport and temperature as noted by the ± 1 σ.
- Published
- 2011
- Full Text
- View/download PDF
7. Supplementary material to 'TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere'
- Author
-
P. K. Patra, S. Houweling, M. Krol, P. Bousquet, D. Belikov, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, K. Corbin, A. Fortems-Cheiney, A. Fraser, E. Gloor, P. Hess, A. Ito, S. R. Kawa, R. M. Law, Z. Loh, S. Maksyutov, L. Meng, P. I. Palmer, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson
- Published
- 2011
- Full Text
- View/download PDF
8. Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio and isotopic composition
- Author
-
G. Monteil, S. Houweling, E. J. Dlugockenky, G. Maenhout, B. H. Vaughn, J. W. C. White, and T. Rockmann
- Abstract
The availability δ13C-CH4 measurements from atmospheric samples has significantly improved in recent years, which allows the construction of time series spanning up to about 2 decades. We have used these measurements to investigate the cause of the methane growth rate decline since 1980, with a special focus on the period 1998–2006 when the methane growth came to a halt. The constraints provided by the CH4 and δ13C-CH4 measurements are used to construct hypothetic source and sink scenarios, which are translated into corresponding atmospheric concentrations using the atmospheric transport model TM3 for evaluation against the measurements. The base scenario, composed of anthropogenic emissions according to Edgar 4, constant emissions from natural sources, and a constant atmospheric lifetime, overestimates the observed global growth rates of CH4 and δ13C-CH4 by, respectively, 10 ppb yr−1 and 0.02‰ yr−1 after the year 2000. It proves difficult to repair this inconsistency by modifying trends in emissions only, notably because a temporary reduction of isotopically light sources, such as natural wetlands, leads to a further increase of δ13C-CH4. Furthermore, our results are difficult to reconcile with the estimated increase of 5 Tg CH4 yr−1 in emissions from fossil fuel use in the period 2000–2005. On the other hand, we find that a moderate (less than 5% per decade) increase in the global OH concentration can bring the model in agreement with the measurements for plausible emission scenarios. This study demonstrates the value of global monitoring of methane isotopes, and calls for further investigation into the role OH and anthropogenic emissions to further improve our understanding of methane variations in recent years.
- Published
- 2011
- Full Text
- View/download PDF
9. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes
- Author
-
K. Hungershoefer, F.-M. Breon, P. Peylin, F. Chevallier, P. Rayner, A. Klonecki, and S. Houweling
- Abstract
In the context of raising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements. It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO) provide more information than the thermal infrared observations (such as those of AIRS or IASI). The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar) technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.
- Published
- 2010
- Full Text
- View/download PDF
10. Supplementary material to 'The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0'
- Author
-
V. Huijnen, J. E. Williams, M. van Weele, T. P. C. van Noije, M. C. Krol, F. Dentener, A. Segers, S. Houweling, W. Peters, A. T. J. de Laat, K. F. Boersma, P. Bergamaschi, P. F. J. van Velthoven, P. Le Sager, H. J. Eskes, F. Alkemade, M. P. Scheele, P. Nédélec, and H.-W. Pätz
- Published
- 2010
- Full Text
- View/download PDF
11. The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements
- Author
-
S. Houweling, I. Aben, F.-M. Breon, F. Chevallier, N. Deutscher, R. Engelen, C. Gerbig, D. Griffith, K. Hungershoefer, R. Macatangay, J. Marshall, J. Notholt, W. Peters, and S. Serrar
- Abstract
This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common CO2 fluxes and initial concentrations. Simulated column averaged CO2 (xCO2) mixing ratios vary between the models by σ=0.5 ppm over the continents and σ=0.27 ppm over sea. A variable, but overall quite encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 Pg C/yr per 106 km2 over land and 0.03 Pg C/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 Pg C/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Further development of these models should receive high priority.
- Published
- 2010
- Full Text
- View/download PDF
12. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison
- Author
-
P. Peylin, S. Houweling, M. C. Krol, U. Karstens, C. Rödenbeck, C. Geels, A. Vermeulen, B. Badawy, C. Aulagnier, T. Pregger, F. Delage, G. Pieterse, P. Ciais, and M. Heimann
- Abstract
Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission maps with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40% and ~80% for the seasonal and diurnal cycles, peak-to-peak) and annual country totals differ by 10% on average and up to 40% for some countries (i.e., The Netherlands). These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN)) and smaller diurnal cycles in summer (−1 ppm at HUN) than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN) than in summer (~5 ppm). The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly) std-dev's amount to ~1.2 (0.8) ppm and ~0.4 (0.3) ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio) over Europe, using two inverse modeling approaches, are relatively small (less that 5%) while changes in annual Fbio (up to ~0.15 Gt C/yr) are only slightly smaller than the differences in annual emission totals and around 30% of the mean European ecosystem carbon sink. These results point to an urgent need to improve not only the transport models but also the assumed spatial and temporal distribution of fossil fuel emission maps.
- Published
- 2009
- Full Text
- View/download PDF
13. Supplementary material to 'Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison'
- Author
-
P. Peylin, S. Houweling, M. C. Krol, U. Karstens, C. Rödenbeck, C. Geels, A. Vermeulen, B. Badawy, C. Aulagnier, T. Pregger, F. Delage, G. Pieterse, P. Ciais, and M. Heimann
- Published
- 2009
- Full Text
- View/download PDF
14. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols
- Author
-
S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J. Roelofs, and F.-M. Breon
- Abstract
SCIAMACHY CO2 measurements show a large variability in total column CO2 over the Sahara desert of up to 10% that is not anticipated from in situ measurements and cannot be explained by results of atmospheric models. Comparisons with colocated aerosol measurements by TOMS and MISR over the Sahara indicate that the seasonal variation of SCIAMACHY-observed CO2 strongly resembles seasonal variations of windblown dust. Correlation coefficients of monthly datasets of colocated MISR aerosol optical depth and SCIAMACHY CO2 vary between 0.6 and 0.8, indicating that about half of the CO2 variance is explained by aerosol optical depth. Radiative transfer model calculations confirm the role of dust and can explain the size of the errors. Sensitivity tests suggest that the remaining variance may largely be explained by variations in the vertical distribution of dust. Further calculations for a few typical aerosol classes and a broad range of atmospheric conditions show that the impact of aerosols on SCIAMACHY retrieved CO2 is by far the largest over the Sahara, but may also reach significant levels elsewhere. Inverse modelling calculations indicate that continental scale source and sink estimation on the basis of SCIAMACHY CO2 data without aerosol correction leads to significant errors. To improve terrestrial CO2 flux estimates by inverse modelling using SCIAMACHY measurements at 1.6μm, aerosol correction will be needed. Methods for correcting aerosol-induced errors exist, but so far mainly on the basis of theoretical considerations. As demonstrated by this study, SCIAMACHY may contribute to a verification of such methods using real data.
- Published
- 2005
- Full Text
- View/download PDF
15. Supplementary material to 'The two-way nested global chemistry-transport zoom model TM5: algorithm and applications'
- Author
-
M. Krol, S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.