1. Magmatic evolution of the Campi Flegrei and Procida volcanic fields, Italy, based on interpretation of data from well-constrained melt inclusions
- Author
-
Esposito, R, Badescu, K, Steele-MacInnis, M, Cannatelli, C, De Vivo, B, Lima, A, Bodnar, R, Manning, C, Esposito R., Badescu K., Steele-MacInnis M., Cannatelli C., De Vivo B., Lima A., Bodnar R. J., Manning C. E., Esposito, R, Badescu, K, Steele-MacInnis, M, Cannatelli, C, De Vivo, B, Lima, A, Bodnar, R, Manning, C, Esposito R., Badescu K., Steele-MacInnis M., Cannatelli C., De Vivo B., Lima A., Bodnar R. J., and Manning C. E.
- Abstract
One of the main goals of studying melt inclusions (MI) is to constrain the pre-eruptive physical and chemical processes that have occurred in a magma reservoir at the micro-scale. Recently, several studies that focused on magmatic differentiation of volcanic systems produced detailed interpretations based on data from MI trapped at different times and locations in the plumbing system. Ideally, MI data should be collected and tested following the melt inclusion assemblage (MIA) protocol that consists of studying and analyzing groups of MI that were trapped at the same time, and, thus, at the same chemical and physical conditions. However, the rarity of MIA in juvenile volcanic phenocrysts precludes this methodology in many cases, leading to uncertainty concerning the validity of the MI as recorders of pre-eruptive conditions. In this study, we focused on MI from the Campi Flegrei (CF) and the Island of Procida (IP) volcanic systems in southern Italy, including data from this study and data from the literature. The database included MI hosted in sanidine, clinopyroxene, plagioclase, biotite and olivine, and, thus, represents melts trapped at various stages in the overall differentiation process. We developed a protocol to select the most reliable MI from a dataset associated with a single magmatic system. As a first step we compare MI data with bulk rock data for the same magmatic system. This comparison reveals that most MI show major element compositions that fall within or close to the range for bulk rocks – these MI are considered to be “normal”. Some MI show anomalous compositions and are not representative of the melt in equilibrium with the phenocryst host and were excluded from the data set. In the second step we selected only bubble-free MI from the previously identified “normal” MI to interpret the volatile evolution. In the third step we compare compositions of the “normal” bubble-free MI to compositions predicted by rhyolite-MELTS simulations, assuming a v
- Published
- 2018