1. Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines.
- Author
-
Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, Nohata N, Yamasaki T, Gotanda T, Tachiwada T, Seki N, and Nakagawa M
- Subjects
- Aged, Apoptosis genetics, Cell Growth Processes genetics, Cell Line, Tumor, Cell Movement genetics, Down-Regulation, Gene Expression, Humans, Male, Microarray Analysis, RNA, Messenger genetics, Transfection, Urinary Bladder Neoplasms pathology, MicroRNAs genetics, Molecular Chaperones genetics, Urinary Bladder Neoplasms genetics
- Abstract
Our previous studies suggested that microRNA (miR)-574-3p is a candidate tumor suppressor microRNA (miRNA) in human bladder cancer (BC). Among 17 down-regulated miRNAs, miR-574-3p is located on chromosome 4p14 where we had identified a chromosomal loss region by array-CGH in BC cell lines. MiR-574-3p expression was down-regulated in BC cell lines. Gain-of-function analysis revealed that cell proliferation, migration and invasion were significantly inhibited in miR‑574‑3p-transfected BC cell lines. Flow cytometry analysis showed that cell apoptosis was induced in miR-574-3p transfectants. Oligo microarray analysis suggested that the mesoderm development candidate 1 (MESDC1) gene was a target gene in miR-574-3p transfectants. Luciferase assays revealed that miR‑574‑3p was directly bound to MESDC1 mRNA. MESDC1 is predicted to be a novel actin-binding protein located on chromosome 15q13. Although the gene is conserved among many species, its functional role is still unknown in both human malignancies and normal tissues. Loss-of-function studies demonstrated that cell proliferation, migration and invasion were significantly inhibited in si-MESDC1-transfected BC cell lines. Flow cytometry analysis showed that apoptosis was induced in si-MESDC1 transfectants. We are the first to demonstrate that miR-574-3p is a miRNA with tumor suppressor function and that MESDC1 (which has a potential oncogenic function in BC) may be targeted by miR-574-3p.
- Published
- 2012
- Full Text
- View/download PDF