1. Catalan numbers and lattice paths
- Author
-
Dogančić , Ema and Martinjak, Ivica
- Subjects
Catalanovi brojevi ,putevi u cjelobrojnoj mreži ,Dyckovi putevi ,Shapirovi putevi ,Whitworthovi putevi ,konvolucija ,Catalan numbers ,lattice paths ,Dyck paths ,Shapiro paths ,Whitworth paths ,convolution ,Catalanovi brojevi, putevi u cjelobrojnoj mreži, Dyckovi putevi, Shapirovi putevi, Whitworthovi putevi, konvolucija - Abstract
Niz brojeva koji odgovaraju broju triangulacija konveksnih mnogokuta nazivamo niz Catalanovih brojeva. Ovi brojevi imaju i mnoštvo drugih kombinatornih interpretacija te se pojavljuju u više područja matematike. U radu dokazujemo osnovna svojstva i konvoluciju za Catalanov niz. Prikazujemo interpretacije koje nazivamo fundamentalnima zbog lake vidljivosti dotične konvolucije ili postojanja jednostavne korespondencije među tim interpretacijama. Posebno se bavimo enumeracijom značajnijih familija puteva u cjelobrojnoj mreži. Promatramo dvije familije Dyckovih puteva s uvjetom na korak (1, −1). Na kraju, prikazujemo prekrasnu Nicholsovu bijekciju između Shapirovih i Whitworthovih puteva., We define Catalan numbers as the sequence of numbers corresponding to the number of triangulations of a convex polygon. The Catalan numbers appear in various mathematical contexts and there are many other combinatorial interpretations of these numbers as well. In this overview firstly we present basic properties and the Catalan convolution. We describe fundamental interpretations, which are those for which the Catalan convolution can be easily seen or there is a simple correspondence with some of the other interpretations. We enumerate some notable families of lattice paths. In particular, we show two families of Dyck paths with constraint on the step (1, −1). Finally, we present the beautiful Nichols’ bijection between Shapiro and Whitworth paths.
- Published
- 2018