1. Earliest phases of star formation (EPoS) Dust temperature distributions in isolated starless cores
- Author
-
Lippok, N., Launhardt, R., Henning, Th., Balog, Z., Beuther, H., Kainulainen, J., Krause, O., Linz, H., Nielbock, M., Ragan, S. E., Robitaille, T. P., Sadavoy, S. I., Schmiedeke, A., Lippok, N., Launhardt, R., Henning, Th., Balog, Z., Beuther, H., Kainulainen, J., Krause, O., Linz, H., Nielbock, M., Ragan, S. E., Robitaille, T. P., Sadavoy, S. I., and Schmiedeke, A.
- Abstract
Context. Stars form by the gravitational collapse of cold and dense molecular cloud cores. Constraining the temperature and density structure of such cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal far-infrared (FIR) dust emission from nearby and isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. Aims. The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of nearby and isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Methods. We have developed a ray-tracing inversion technique that can be used to derive the temperature and density structure of starless cores directly from the observed dust emission maps without the need to make assumptions about the physical conditions. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless molecular cloud cores from dust emission maps in the wavelengths range 100 mu m-1.2 mm. We then employ self-consistent radiative transfer modeling to the density profiles derived with the ray-tracing inversion method. In this model, the interstellar radiation field (ISRF) is the only heating source. The local strength of the ISRF as well as the total extinction provided by the outer envelope are treated as semi-free parameters which we scale within defined limits. The best-fit values of both parameters are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. Results. We confirm earlier results and show that all starless cores are significantly colder inside than outside, with central core temperatures in the range 7
- Published
- 2016