1. Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1.
- Author
-
van Dorp S, Qiu R, Choi UB, Wu MM, Yen M, Kirmiz M, Brunger AT, and Lewis RS
- Subjects
- Cell Membrane metabolism, Endoplasmic Reticulum metabolism, Fluorescence Resonance Energy Transfer, Neoplasm Proteins metabolism, ORAI1 Protein metabolism, Stromal Interaction Molecule 1 metabolism, Calcium Signaling, Neoplasm Proteins genetics, ORAI1 Protein genetics, Stromal Interaction Molecule 1 genetics
- Abstract
The dimeric ER Ca
2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it toward the plasma membrane to activate Orai and SOCE after store depletion., Competing Interests: Sv, RQ, UC, MW, MY, MK No competing interests declared, AB, RL Reviewing editor, eLife, (© 2021, van Dorp et al.)- Published
- 2021
- Full Text
- View/download PDF