1. Monitoring early age elastic and viscoelastic properties of alkali-activated slag mortar by means of repeated minute-long loadings
- Author
-
Ali Naqi, Brice Delsaute, Markus Königsberger, and Stéphanie Staquet
- Subjects
Alkali-activated materials ,Heat release compressive strength ,Elastic stiffness ,Creep ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Building construction ,TH1-9745 - Abstract
This study investigates the development of elastic and creep properties of sodium hydroxide-activated blast furnace slag mortar, utilizing three different molarities of the activator solution and two solution-to-binder ratio and a reference OPC-based mixture, since the earliest age. The experimental phase involves a series of hourly-repeated 5-min long creep tests on the aging material. This approach enables continuous monitoring, facilitating the characterization of early-age elastic stiffness and creep properties. Linear regression is employed to calculate the tangent unloading (elastic) modulus and Poisson's ratio. To model short-term creep behaviour, a power-law creep function is utilized. The integration of these findings with calorimetry-derived evolutions of cumulative heat release establishes linear correlation between (compressive) strength and heat release, along with a power function relationship between unloading (elastic) modulus and heat release. An optimal alkali dosage (Na2O content) appears to be vital for long-term strength development. Additionally, the creep parameters, namely amplitude (A) and kinetic (K), demonstrate a gradual decrease, although they maintain values higher than those of the corresponding OPC mixture, as the heat release progresses.
- Published
- 2023
- Full Text
- View/download PDF