1. Bioaccumulation and speciation of arsenic in plankton from tropical soda lakes along a salinity gradient.
- Author
-
Viana JLM, Steffler DA, Hernández AH, Dos Santos Costa J, Pellegrinetti TA, de Jesus ECR, Cancian M, Fiore MF, Rezende-Filho AT, Sussulini A, Barbiero L, Menegario AA, and Fostier AH
- Subjects
- Animals, Lakes chemistry, Bioaccumulation, Salinity, Zooplankton metabolism, Phytoplankton metabolism, Plankton chemistry, Arsenic metabolism
- Abstract
Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (As
Tot ) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF