1. Development of innovative materials and thermal treatments for DEMO water cooled blanket
- Author
-
L. Bozzetto, C. Cristalli, Luciano Pilloni, N. Bettocchi, O. Tassa, E. Zanin, Pilloni, L., Cristalli, C., Tassa, O., Bozzetto, L., Zanin, E., and Bettocchi, N.
- Subjects
Nuclear and High Energy Physics ,Toughness ,Materials science ,Materials Science (miscellaneous) ,Charpy impact test ,Blanket ,01 natural sciences ,Heat treatment ,010305 fluids & plasmas ,0103 physical sciences ,Ultimate tensile strength ,Tensile ,Irradiation ,Charpy ,Embrittlement ,Microstructure ,010302 applied physics ,EUROFER 97 ,KLST ,RAFM steels ,Metallurgy ,lcsh:TK9001-9401 ,Grain size ,Nuclear Energy and Engineering ,RAFM steel ,lcsh:Nuclear engineering. Atomic power - Abstract
One of the options currently taken into account for the realization of the first DEMO reactor is the “water-cooled lanket”. This option implies an irradiation temperature for the blanket material in the range of 280–350 °C. Therefore, in light of the under irradiation behaviour of EUROFER, namely of the DBTT shift toward high temperature due to the low irradiation temperature embrittlement, the target of the hereby reported activities is the development of much tougher alloys, to try to tolerate the embrittlement due to the low irradiation temperature. We report in this paper the work done to optimize the toughness of Eurofer 97, increasing the normalizing temperature and maintaining a small grain size using multiple normalizing treatments. We report also the mechanical behaviour of two 9Cr1WTa type alloys, produced and tested with the same aim to find alloys more resistant to embrittlement at low irradiation temperature. Keywords: EUROFER 97, RAFM steels, Microstructure, Heat treatment, Tensile, Charpy, KLST
- Published
- 2019