1. Informative missingness: What can we learn from patterns in missing laboratory data in the electronic health record?
- Author
-
Tan ALM, Getzen EJ, Hutch MR, Strasser ZH, Gutiérrez-Sacristán A, Le TT, Dagliati A, Morris M, Hanauer DA, Moal B, Bonzel CL, Yuan W, Chiudinelli L, Das P, Zhang HG, Aronow BJ, Avillach P, Brat GA, Cai T, Hong C, La Cava WG, Hooi Will Loh H, Luo Y, Murphy SN, Yuan Hgiam K, Omenn GS, Patel LP, Jebathilagam Samayamuthu M, Shriver ER, Shakeri Hossein Abad Z, Tan BWL, Visweswaran S, Wang X, Weber GM, Xia Z, Verdy B, Long Q, Mowery DL, and Holmes JH
- Subjects
- Humans, Data Collection, Records, Cluster Analysis, Electronic Health Records, COVID-19
- Abstract
Background: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients., Methods: We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 30 September 2021. We analyzed missing laboratory measurements across sites, missingness stratification by demographic variables, temporal trends of missingness, correlations between labs based on missingness indicators over time, and clustering of groups of labs based on their missingness/ordering pattern., Results: With these analyses, we identified mapping issues faced in seven out of 15 sites. We also identified nuances in data collection and variable definition for the various sites. Temporal trend analyses may support the use of laboratory test result missingness patterns in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships between various labs that reflect clinical behaviors., Conclusion: In this work, we use computational approaches to relate missingness patterns to hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time and at multiple sites, where there might be different phases, policies, etc. Changes in missingness could suggest a change in a patient's condition, and patterns of missingness among laboratory measurements could potentially identify clinical outcomes. This allows sites to consider missing data as informative to analyses and help researchers identify which sites are better poised to study particular questions., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF