1. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells.
- Author
-
Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, and Camussi G
- Subjects
- Acute Kidney Injury genetics, Acute Kidney Injury metabolism, Acute Kidney Injury pathology, Animals, Apoptosis, Capillaries metabolism, Capillaries pathology, Cell Hypoxia, Cell Proliferation, Cell-Derived Microparticles metabolism, Cell-Derived Microparticles pathology, Cells, Cultured, Chemotaxis, Leukocyte, Disease Models, Animal, Endothelial Cells metabolism, Endothelial Cells pathology, Epithelial Cells metabolism, Epithelial Cells pathology, Fibrosis, Gene Expression Regulation, Kidney blood supply, Kidney pathology, Kidney Tubules metabolism, Kidney Tubules pathology, Male, Oligonucleotides metabolism, RNA Interference, Rats, Rats, Wistar, Regeneration, Reperfusion Injury genetics, Reperfusion Injury metabolism, Reperfusion Injury pathology, Ribonuclease III genetics, Ribonuclease III metabolism, Time Factors, Transfection, Acute Kidney Injury prevention & control, Cell-Derived Microparticles transplantation, Endothelial Cells transplantation, Kidney metabolism, MicroRNAs metabolism, Reperfusion Injury prevention & control, Stem Cell Transplantation, Stem Cells metabolism, Stem Cells pathology
- Abstract
Endothelial progenitor cells are known to reverse acute kidney injury by paracrine mechanisms. We previously found that microvesicles released from these progenitor cells activate an angiogenic program in endothelial cells by horizontal mRNA transfer. Here, we tested whether these microvesicles prevent acute kidney injury in a rat model of ischemia-reperfusion injury. The RNA content of microvesicles was enriched in microRNAs (miRNAs) that modulate proliferation, angiogenesis, and apoptosis. After intravenous injection following ischemia-reperfusion, the microvesicles were localized within peritubular capillaries and tubular cells. This conferred functional and morphologic protection from acute kidney injury by enhanced tubular cell proliferation, reduced apoptosis, and leukocyte infiltration. Microvesicles also protected against progression of chronic kidney damage by inhibiting capillary rarefaction, glomerulosclerosis, and tubulointerstitial fibrosis. The renoprotective effect of microvesicles was lost after treatment with RNase, nonspecific miRNA depletion of microvesicles by Dicer knock-down in the progenitor cells, or depletion of pro-angiogenic miR-126 and miR-296 by transfection with specific miR-antagomirs. Thus, microvesicles derived from endothelial progenitor cells protect the kidney from ischemic acute injury by delivering their RNA content, the miRNA cargo of which contributes to reprogramming hypoxic resident renal cells to a regenerative program.
- Published
- 2012
- Full Text
- View/download PDF