1. Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis.
- Author
-
Mauroux A, Joncour P, Brassard-Jollive N, Bacar H, Gillet B, Hughes S, Ardidie-Robouant C, Marchand L, Liabotis A, Mailly P, Monnot C, Germain S, Bordes S, Closs B, Ruggiero F, and Muller L
- Subjects
- Humans, Tissue Engineering methods, Epidermis, Neovascularization, Pathologic metabolism, Fibroblasts, Extracellular Matrix metabolism, Dermis, Cell Culture Techniques
- Abstract
Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions. We first performed RNA-seq differential expression analysis to determine whether several rounds of cell amplification and high-density culture affected their gene expression profile. Bioinformatics analysis revealed that expression of angiogenesis-related and matrisome gene signatures were maintained, resulting in papillary and reticular ECMs that differ in composition and structure. The impact of secreted or ECM-associated factors was then assessed using two independent 3D angiogenesis assays: -1/ a fibrin hydrogel-based assay allowing investigation of diffusible secreted factors, -2/ a scaffold-free cell-sheet based assay for investigation of fibroblast-produced microenvironment. These analyses revealed that papillary fibroblasts secrete highly angiogenic factors and produce a microenvironment characterised by ECM remodelling capacity and dense and branched microvascular network, whereas reticular fibroblasts produced more structural core components of the ECM associated with less branched and larger vessels. These features mimick the characteristics of both the ECM and the vasculature of dermis subcompartments. In addition to showing that skin fibroblast populations differentially regulate angiogenesis via both secreted and ECM factors, our work emphasizes the importance of papillary and reticular fibroblasts for engineering and modelling dermis microenvironment and vascularization. STATEMENT OF SIGNIFICANCE: Recent advances have brought to the forefront the central role of microenvironment and vascularization in tissue engineering for regenerative medicine and microtissue modelling. We have investigated the role of papillary and reticular fibroblast subpopulations using scaffold-free cell sheet culture. This approach provides differentiated cells conditions allowing the production of their own microenvironment. Analysis of gene expression profiles and characterisation of the matrix produced revealed strong and specific angiogenic properties that we functionally characterized using 3D angiogenesis models targeting the respective role of either secreted or matrix-bound factors. This study demonstrates the importance of cell-generated extracellular matrix and questions the importance of cell source and the relevance of hydrogels for developing physio-pathologically relevant tissue engineered substitutes., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Adèle Mauroux, Laëtitia Marchand, Sylvie Bordes, and Brigitte Closs are employees of SILAB. Florence Ruggiero and Laurent Muller declare the receipt of a grant from SILAB. PJ, NBJ, HB, BG, SH, CAR, AL, PM, CM and SG state no conflict of interest, (Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF