1. Downed woody debris carbon emissions in a European temperate virgin forest as driven by species, decay classes, diameter and microclimate.
- Author
-
Buezo J, Medina NG, Hereş AM, Petritan IC, Cornelissen JHC, Petritan AM, Esteban R, Ilinca E, Stoian R, and Curiel Yuste J
- Subjects
- Forests, Wood, Trees, Microclimate, Carbon
- Abstract
Downed woody debris (DWD) plays an important role as regulator of nutrient and carbon (C) cycling in forests, accounting for up to the 20 % of the total C stocks in primary forests. DWD persistence is highly influenced by microbial decomposition, which is determined by various environmental factors, including fluctuations in temperature and moisture, as well as in intrinsic DWD properties determined by species, diameter, or decay classes (DCs). The relative importance of these different drivers, as well as their interactions, remains largely unknown. Moreover, the importance of DWD for C cycling in virgin forests remains poorly understood, due to their scarcity and poor accessibility. To address this research gap, we conducted a study on DWD respiration (R
DWD ), in a temperate virgin forest dominated by European beech and silver fir. Our investigation analysed the correlation between RDWD of these two dominant tree species and the seasonal changes in climate (temperature and moisture), considering other intrinsic DWD traits such as DCs (1, 2 and 4) and diameters (1, 10 and 25 cm). As anticipated, RDWD (normalized per gram of dry DWD) increased with air temperature. Surprisingly, DWD diameter also had a strong positive correlation with RDWD . Nonetheless, the sensitivity to both variables and other intrinsic traits (DC and density) was greatly modulated by the species. On the contrary, water content, which exhibited a considerable spatial variation, had an overall negative effect on RDWD . Virgin forests are generally seen as ineffective C sinks due to their lack of net productivity and high respiration and nutrient turnover. However, the rates of RDWD in this virgin forest were significantly lower than those previously estimated for managed forests. This suggests that DWD in virgin forests may be buffering forest CO2 emissions to the atmosphere more than previously thought., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF