5 results on '"Holland, Sophie"'
Search Results
2. Priorities to inform research on marine plastic pollution in Southeast Asia.
- Author
-
Omeyer LCM, Duncan EM, Aiemsomboon K, Beaumont N, Bureekul S, Cao B, Carrasco LR, Chavanich S, Clark JR, Cordova MR, Couceiro F, Cragg SM, Dickson N, Failler P, Ferraro G, Fletcher S, Fong J, Ford AT, Gutierrez T, Shahul Hamid F, Hiddink JG, Hoa PT, Holland SI, Jones L, Jones NH, Koldewey H, Lauro FM, Lee C, Lewis M, Marks D, Matallana-Surget S, Mayorga-Adame CG, McGeehan J, Messer LF, Michie L, Miller MA, Mohamad ZF, Nor NHM, Müller M, Neill SP, Nelms SE, Onda DFL, Ong JJL, Pariatamby A, Phang SC, Quilliam R, Robins PE, Salta M, Sartimbul A, Shakuto S, Skov MW, Taboada EB, Todd PA, Toh TC, Valiyaveettil S, Viyakarn V, Wonnapinij P, Wood LE, Yong CLX, and Godley BJ
- Subjects
- Asia, Southeastern, Environmental Monitoring, Environmental Pollution, Philippines, Waste Products analysis, Ecosystem, Plastics
- Abstract
Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
3. Aerobic biotransformation of 6:2 fluorotelomer sulfonate by Dietzia aurantiaca J3 under sulfur-limiting conditions.
- Author
-
Méndez V, Holland S, Bhardwaj S, McDonald J, Khan S, O'Carroll D, Pickford R, Richards S, O'Farrell C, Coleman N, Lee M, and Manefield MJ
- Subjects
- ATP-Binding Cassette Transporters metabolism, Actinobacteria, Alkanesulfonates analysis, Biotransformation, Membrane Transport Proteins metabolism, Mixed Function Oxygenases metabolism, Proteomics, RNA, Ribosomal, 16S genetics, Sulfur metabolism, Fluorocarbons analysis, Water Pollutants, Chemical analysis
- Abstract
The polyfluorinated alkyl substance 6:2 fluorotelomer sulfonate (6:2 FTS) has been detected in diverse environments impacted by aqueous film-forming foams used for firefighting. In this study, a bacterial strain (J3) using 6:2 FTS as a sulfur source was isolated from landfill leachate previously exposed to polyfluoroalkyl substances in New South Wales, Australia. Strain J3 shares 99.9% similarity with the 16S rRNA gene of Dietzia aurantiaca CCUG 35676
T . Genome sequencing yielded a draft genome sequence of 37 contigs with a G + C content of 69.7%. A gene cluster related to organic sulfur utilisation and assimilation was identified, that included an alkanesulfonate monooxygenase component B (ssuD), an alkanesulfonate permease protein (ssuC), an ABC transporter (ssuB), and an alkanesulfonate-binding protein (ssuA). Proteomic analyses comparing strain J3 cultures using sulfate and 6:2 FTS as sulfur source indicated that the ssu gene cluster was involved in 6:2 FTS biodegradation. Upregulated proteins included the SsuD monooxygenase, the SsuB transporter, the ABC transporter permease (SsuC), an alkanesulfonate-binding protein (SsuA), and a nitrilotriacetate monooxygenase component B. 6:2 Fluorotelomer carboxylic acid (6:2 FTCA) and 6:2 fluorotelomer unsaturated acid (6:2 FTUA) were detected as early degradation products in cultures (after 72 h) while 5:3 fluorotelomer acid (5:3 FTCA), perfluorohexanoic acid (PFHxA) and perfluoropentanoic acid (PFPeA) were detected as later degradation products (after 168 h). This work provides biochemical and metabolic insights into 6:2 FTS biodegradation by the Actinobacterium D. aurantiaca J3, informing the fate of PFAS in the environment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
4. Dehalobium species implicated in 2,3,7,8-tetrachlorodibenzo-p-dioxin dechlorination in the contaminated sediments of Sydney Harbour Estuary.
- Author
-
Lee M, Liang G, Holland SI, O'Farrell C, Osborne K, and Manefield MJ
- Subjects
- Bays, Dibenzofurans, Polychlorinated analysis, Estuaries, RNA, Ribosomal, 16S genetics, Benzofurans analysis, Dioxins analysis, Polychlorinated Dibenzodioxins analysis
- Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/F) are some of the most environmentally recalcitrant and toxic compounds. They occur naturally and as by-products of anthropogenic activity. Sydney Harbour Estuary (Sydney, Australia), is heavily contaminated with PCDD/F. Analysis of sediment cores revealed that the contamination source area in Homebush Bay continues to have one of the highest levels of PCDD/F contamination in the world (5207 pg WHO-TEQ g
-1 ) with >50% of the toxicity attributed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD/F congener. Comparison of congener profiles at the contamination source area with surrounding bays and historical data provided evidence for the attenuation of 2,3,7,8-TCDD and other congeners at the source area. This finding was supported by the detection of di-, mono- and unchlorinated dibenzo-p-dioxin. Microbial community analysis of sediments by 16S rRNA amplicon sequencing revealed an abundance of lineages from the class Dehalococcoidia (up to 15% of the community), including the genus Dehalobium (up to 0.5%). Anaerobic seawater enrichment cultures using perchloroethene as more biologically available growth substrate enriched the Dehalobium population by more than six-fold. The enrichment culture then proved capable of reductively dechlorinating 2,3,7,8-TCDD to 2,3,7-TriCDD and octachlorodibenzo-p-dibenzodioxin (OCDD) to hepta and hexa congeners. This work is the first to show microbial reductive dehalogenation of 2,3,7,8-TCDD with a bacterium from outside the Dehalococcoides genus, and one of only a few that demonstrates PCDD/F dechlorination in a marine environment., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
5. Inferring trophic conditions in managed aquifer recharge systems from metagenomic data.
- Author
-
Hellauer K, Michel P, Holland SI, Hübner U, Drewes JE, Lauro FM, and Manefield MJ
- Subjects
- Bayes Theorem, Biodegradation, Environmental, Humans, Organic Chemicals, Groundwater, Water Pollutants, Chemical analysis
- Abstract
Humans are increasingly dependent on engineered landscapes to minimize negative health impacts of water consumption. Managed aquifer recharge (MAR) systems, such as river and lake bank filtration, surface spreading or direct injection into the aquifer have been used for decades for water treatment and storage. Microbial and sorptive processes in these systems are effective for the attenuation of many emerging contaminants including trace organic chemicals such as pharmaceuticals and personal care products. Recent studies showed a superior efficiency of trace organic chemical biotransformation by incumbent communities of microorganisms under oxic and carbon-limited (oligotrophic) conditions. This study sought to identify features of bacterial genomes that are predictive of trophic strategy in this water management context. Samples from a pilot scale managed aquifer recharge system with regions of high and low carbon concentration, were used to generate a culture collection from which oligotrophic and copiotrophic bacteria were categorized. Genomic markers linked to either trophic strategy were used to develop a Bayesian network model that can infer prevailing carbon conditions in MAR systems from metagenomic data., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.