1. Introduction to the special issue on deep learning approaches for machine translation
- Author
-
Marta R. Costa-jussà, Holger Schwenk, Kyunghun Cho, Alexandre Allauzen, Loïc Barrault, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
- Subjects
Machine translation ,Computer science ,020209 energy ,02 engineering and technology ,computer.software_genre ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,Theoretical Computer Science ,Traducció automàtica ,Aprenentatge automàtic ,0202 electrical engineering, electronic engineering, information engineering ,Architecture ,ComputingMilieux_MISCELLANEOUS ,business.industry ,Deep learning ,Algorithmic learning theory ,Perspective (graphical) ,Neural Networks (Computer) ,Human-Computer Interaction ,020201 artificial intelligence & image processing ,Informàtica::Intel·ligència artificial [Àrees temàtiques de la UPC] ,Artificial intelligence ,business ,computer ,Machine translating ,Software ,Natural language processing ,Natural language - Abstract
Deep learning is revolutionizing speech and natural language technologies since it is offering an effective way to train systems and obtaining significant improvements. The main advantage of deep learning is that, by developing the right architecture, the system automatically learns features from data without the need of explicitly designing them. This machine learning perspective is conceptually changing how speech and natural language technologies are addressed. In the case of Machine Translation (MT), deep learning was first introduced in standard statistical systems. By now, end-to-end neural MT systems have reached competitive results. This special issue introductory paper addresses how deep learning has been gradually introduced in MT. This introduction covers all topics contained in the papers included in this special issue, which basically are: integration of deep learning in statistical MT; development of the end-to-end neural MT system; and introduction of deep learning in interactive MT and MT evaluation. Finally, this introduction sketches some research directions that MT is taking guided by deep learning.
- Published
- 2017
- Full Text
- View/download PDF