1. Functionalisation and behaviours of polysaccharides conjugated with phenolic compounds by oxidoreductase catalysis: A review.
- Author
-
Boundaoui K, Le Cerf D, and Dulong V
- Subjects
- Oxidoreductases chemistry, Oxidoreductases metabolism, Catalysis, Phenols chemistry, Polysaccharides chemistry
- Abstract
Polysaccharides have been extensively studied in recent decades. Their conjugation with phenolic compounds of natural origin has demonstrated high added value, not only enhancing certain inherent properties but also introducing new ones. Recently, a sustainable approach utilizing oxidoreductase enzymes (Oxredases) (laccases (Lac), tyrosinases (Tyr) and peroxidases (Per)) has been employed, and interesting progress has been made. This review aims to provide a comprehensive understanding of the various Oxredases employed and the reaction mechanisms involved in the grafting of phenolic compounds (PCs) onto polysaccharides (PSs). We provide a detailed analysis of these reaction mechanisms based on modified polymer structural analysis techniques and supported by model reactions. The impacts of different reaction parameters on the final products are thoroughly discussed. Additionally, the properties of conjugated PS-PC are extensively explored to provide an overview of their physicochemical and functional behaviours. A comparison of the PS-PC conjugates obtained via the Oxredase approach and other existing chemical- and radical-mediated approaches is also presented, emphasizing the benefits of this enzymatic pathway. Finally, a critical analysis is proposed to identify areas of improvement, aiming to further refine this environmentally friendly approach for conjugating PSs and PCs and its scalability for industrial applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF