1. Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst
- Author
-
Minrui Liu, Chuangxin Wang, Xing-e Qi, Shaobo Du, and Hongyuhang Ni
- Subjects
Cell surface display ,Chlortetracycline degradation ,Manganese peroxidase ,Wastewater treatment ,Antibiotic pollution ,Environmental pollution ,TD172-193.5 ,Environmental sciences ,GE1-350 - Abstract
Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
- Published
- 2024
- Full Text
- View/download PDF