1. Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model
- Author
-
Sintu Singha, Christophe Airiau, Laurent Cordier, Kaushik Kumar Nagarajan, Centre National de la Recherche Scientifique - CNRS (FRANCE), ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechnique (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Poitiers (FRANCE), CSIR-National Aerospace Laboratories - NAL (INDIA), Institut Recherche et Ingénierie en Matériaux, Mécanique et Energétique - Pprime (Chasseneuil-du-Poitou, France), National Aerospace Laboratories, Turbulence Incompressible et Contrôle (TIC ), Département Fluides, Thermique et Combustion (FTC), Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Institut Pprime ( PPRIME ), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique ( CNRS ), Institut de mécanique des fluides de Toulouse ( IMFT ), Institut National Polytechnique [Toulouse] ( INP ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Ecole Nationale Supérieure de Mécanique et d'Aérotechnique - ENSMA (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), and Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation ,General Computer Science ,Noise reduction ,Mécanique des fluides ,Proper Orthogonal Decomposition ,Boundary (topology) ,02 engineering and technology ,01 natural sciences ,MSC: 76N25, 76M30, 76Q05, 93A30 ,010305 fluids & plasmas ,Surrogate model ,0203 mechanical engineering ,Control theory ,0103 physical sciences ,Reduced-order modeling ,Upstream (networking) ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Open cavity flow ,Mathematics ,General Engineering ,Open-loop controller ,[ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Optimal control ,Modélisation et simulation ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Noise ,020303 mechanical engineering & transports ,Stagnation enthalpy - Abstract
International audience; Flow over open cavities is mainly governed by a feedback mechanism due to the interaction of shear layer instabilities and acoustic forcing propagating upstream in the cavity. This phenomenon is known to lead to resonant tones that can reach 180 dB in the far-field and may cause structural fatigue issues and annoying noise emission. This paper concerns the use of optimal control theory for reducing the noise level emitted by the cavity. Boundary control is introduced at the cavity upstream corner as a normal velocity component. Model-based optimal control of cavity noise involves multiple simulations of the compressible Navier–Stokes equations and its adjoint, which makes it a computationally expensive optimization approach. To reduce the computational costs, we propose to use a reduced-order model (ROM) based on Proper Orthogonal Decomposition (POD) as a surrogate model of the forward simulation. For that, a control input separation method is first used to introduce explicitly the control effect in the model. Then, an accurate and robust POD ROM is derived by using an optimization-based identification procedure and generalized POD modes, respectively. Since the POD modes describe only velocities and speed of sound, we minimize a noise-related cost functional characteristic of the total enthalpy unsteadiness. After optimizing the control function with the reduced-order model, we verify the optimality of the solution using the original, high-fidelity model. A maximum noise reduction of 4.7 dB is reached in the cavity and up to 16 dB at the far-field.
- Published
- 2018
- Full Text
- View/download PDF