1. Easy and green synthesis of nano-ZnO and nano-TiO2 for efficient photocatalytic degradation of organic pollutants
- Author
-
Nusrat Jahan Tamanna, Md. Sahadat Hossain, Sumaya Tabassum, Newaz Mohammed Bahadur, and Samina Ahmed
- Subjects
Radical scavenger ,Industrial effluent ,Nanocomposite ,Photocatalysis ,Congo red ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
As the textile industry expands, more industrial waste effluents are released into natural water streams, prompting the research and development of innovative materials for the remediation of environmental issues. In this research, a direct precipitation and hydrolysis method were used to synthesize ZnO and TiO2 nanoparticles, respectively that were utilized to investigate the photocatalytic activity of Congo Red (CR) dye. Afterward, the crystallite size was computed from the data of the X-ray diffractometer (XRD), and utilizing several models (Scherrer equation, LSLMSE, Monshi-Scherrer equation, Williamson-Hall model, Size-strain plot method, Halder-Wagner model, Sahadat-Scherrer model). Among these models, the size-strain plot model yields the most accurate crystal size (45.31 nm) for ZnO nanoparticles and the Halder-Wagner model (2.44 nm) for TiO2 nanoparticles. Scanning Electron Microscope exhibited the spherical shape of nanoparticles (ZnO, and TiO2) with particle size (less than 151 nm). The absorption spectrum from Fourier transform infrared (FTIR) spectroscopy confirmed the formation of nanoparticles (ZnO, and TiO2). Thereafter, the photocatalytic activity of the ZnO-TiO2 nanocomposite was evaluated by using Congo Red (CR) dye under different process variables, such as catalyst dose, time, initial dye concentration, pH, radical scavenging ability, and reusability. The best degradation (90 %) was recorded at 180 min time intervals using a 0.2 g catalyst dose with a 20 ppm CR concentration at pH 9.
- Published
- 2024
- Full Text
- View/download PDF