Background: The cerebellum and primary motor cortex (M1) are crucial to coordinated and accurate movements of the upper limbs. There is also appreciable evidence that these two structures exert somewhat divergent influences upon proximal versus distal upper limb control. Here, we aimed to differentially regulate the contribution of the cerebellum and M1 to proximal and distal effectors during motor adaptation, with transcranial direct current stimulation (tDCS). For this, we employed tasks that promote similar motor demands, but isolate whole arm from hand/finger movements, in order to functionally segregate the hierarchy of upper limb control., Methods: Both young and older adults took part in a visuomotor rotation task; where they adapted to a 60° visuomotor rotation using either a hand-held joystick (requiring finger/hand movements) or a 2D robotic manipulandum (requiring whole-arm reaching movements), while M1, cerebellar or sham tDCS was applied., Results: We found that cerebellar stimulation improved adaptation performance when arm movements were required to complete the task, while in contrast stimulation of M1 enhanced adaptation during hand and finger movements only. This double-dissociation was replicated in an independent group of older adults, demonstrating that the behaviour remains intact in ageing., Conclusions: These results suggest that stimulation of distinct motor areas can selectively improve motor adaptation in the proximal and distal upper limb. This also highlights new ways in which tDCS might be best applied to achieve reliable rehabilitation of upper limb motor deficits., Competing Interests: Declaration of competing interest The authors declare that no competing interest exist., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)