1. Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI dataResearch in context
- Author
-
Weizheng Yan, Vince Calhoun, Ming Song, Yue Cui, Hao Yan, Shengfeng Liu, Lingzhong Fan, Nianming Zuo, Zhengyi Yang, Kaibin Xu, Jun Yan, Luxian Lv, Jun Chen, Yunchun Chen, Hua Guo, Peng Li, Lin Lu, Ping Wan, Huaning Wang, Huiling Wang, Yongfeng Yang, Hongxing Zhang, Dai Zhang, Tianzi Jiang, and Jing Sui
- Subjects
Medicine ,Medicine (General) ,R5-920 - Abstract
Background: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. Methods: Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and 542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpretability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs. Findings: Accuracies of 83·2% and 80·2% were obtained respectively for the multi-site pooling and leave-one-site-out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two group-discriminative time courses, which is true even when adopting different brain atlases to extract time series. Interpretation: This is the first attempt to apply a multi-scale RNN model directly on fMRI time courses for classification of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications. Fund: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health Grants, National Science Foundation. Keywords: Recurrent neural network (RNN), Schizophrenia, Multi-site classification, fMRI, Striatum, Cerebellum, Deep learning
- Published
- 2019
- Full Text
- View/download PDF