1. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas.
- Author
-
Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, and Azevedo M
- Subjects
- Arkansas epidemiology, COVID-19 Testing, Humans, Membrane Glycoproteins, Phosphoproteins, Polyproteins, RNA, Viral genetics, Wastewater, Wastewater-Based Epidemiological Monitoring, COVID-19, SARS-CoV-2 genetics
- Abstract
Although SARS-CoV-2 can cause severe illness and death, a percentage of the infected population is asymptomatic. This, along with other factors, such as insufficient diagnostic testing and underreporting due to self-testing, contributes to the silent transmission of SARS-CoV-2 and highlights the importance of implementing additional surveillance tools. The fecal shedding of the virus from infected individuals enables its detection in community wastewater, and this has become a valuable public health tool worldwide as it allows the monitoring of the disease on a populational scale. Here, we monitored the presence of SARS-CoV-2 and its dynamic genomic changes in wastewater sampled from two metropolitan areas in Arkansas during major surges of COVID-19 cases and assessed how the viral titers in these samples related to the clinical case counts between late April 2020 and January 2022. The levels of SARS-CoV-2 RNA were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) using a set of TaqMan assays targeting three different viral genes (encoding ORF1ab polyprotein, surface glycoprotein, and nucleocapsid phosphoprotein). An allele-specific RT-qPCR approach was used to screen the samples for SARS-CoV-2 mutations. The identity and genetic diversity of the virus were further investigated through amplicon-based RNA sequencing, and SARS-CoV-2 variants of concern were detected in wastewater samples throughout the duration of this study. Our data show how changes in the virus genome can affect the sensitivity of specific RT-qPCR assays used in COVID-19 testing with the surge of new variants. A significant association was observed between viral titers in wastewater and recorded number of COVID-19 cases in the areas studied, except when assays failed to detect targets due to the presence of particular variants. These findings support the use of wastewater surveillance as a reliable complementary tool for monitoring SARS-CoV-2 and its genetic variants at the community level., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF