1. Fluorescence based dopamine detection
- Author
-
Valeriia Sliesarenko, Urban Bren, and Aleksandra Lobnik
- Subjects
Fluorometric method ,Dopamine ,O-phthalaldehyde ,Pluronic F127 ,Instruments and machines ,QA71-90 - Abstract
Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λex/λem = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λex/λem = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.
- Published
- 2024
- Full Text
- View/download PDF