1. Cardiovascular developmental hazards of valproic acid in zebrafish.
- Author
-
Lei Y, Liu Y, Xie W, Wei Y, Zhuang X, Zhang H, Cao H, and Wang X
- Subjects
- Animals, Apoptosis drug effects, Cardiovascular System drug effects, Water Pollutants, Chemical toxicity, Embryonic Development drug effects, Zebrafish, Valproic Acid toxicity, Reactive Oxygen Species metabolism, Embryo, Nonmammalian drug effects
- Abstract
Valproic acid (VPA) is predominantly prescribed for epilepsy, convulsions, and other psychiatric disorders. As an epigenetic regulator, it is also used to treat various forms of cancer. The clinical demand for the drug may pose an environmental hazard. Evidence indicates that VPA's significant therapeutic value comes at the cost of possible side toxic effects, as symptoms of birth defects have been confirmed in animal experiments using VPA. However, the effects of VPA during the development of the circulatory system remain unclear. In this study, zebrafish embryos were exposed to a series of concentrations of VPA between three hours post fertilization (hpf) and five days post fertilization (dpf). The results demonstrated time- and dose-dependent developmental delays in the zebrafish, including cardiovascular malformation and decreased movement and reaction time. Consistent with the in vivo results, exposure to VPA increased the levels of myocardial reactive oxygen species (ROS) and cell apoptosis through cardiac mitochondrial turnover disorders. The expression levels of genes related to cardiovascular development and antioxidant response were downregulated, while genes related to apoptosis pathways were upregulated. Overall, our toxicological studies of VPA exposure illustrate the damage to cardiovascular development, raising concerns about the hazard of VPA exposure in early pregnancy. Our study provides novel insights into the potential environmental risks of VPA., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF