1. Lotus leaf extract can attenuate salpingitis in laying hens by inhibiting apoptosis.
- Author
-
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J, Liu M, Bai R, Wang N, Guo L, Liu G, Yang X, Zeng J, and He B
- Subjects
- Animals, Female, Chickens, Apoptosis, RNA, Messenger, Plant Extracts pharmacology, Plant Extracts therapeutic use, Salpingitis veterinary
- Abstract
This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF