1. Image-based multi-omics analysis for oral science: Recent progress and perspectives.
- Author
-
Chen Y, Du P, Zhang Y, Guo X, Song Y, Wang J, Yang LL, and He W
- Abstract
Objectives: The diagnosis and treatment of oral and dental diseases rely heavily on various types of medical imaging. Deep learning-mediated multi-omics analysis can extract more representative features than those identified through traditional diagnostic methods. This review aims to discuss the applications and recent advances in image-based multi-omics analysis in oral science and to highlight its potential to enhance traditional diagnostic approaches for oral diseases., Study Selection, Data, and Sources: A systematic search was conducted in the PubMed, Web of Science, and Google Scholar databases, covering all available records. This search thoroughly examined and summarized advances in image-based multi-omics analysis in oral and maxillofacial medicine., Conclusions: This review comprehensively summarizes recent advancements in image-based multi-omics analysis for oral science, including radiomics, pathomics, and photographic-based omics analysis. It also discusses the ongoing challenges and future perspectives that could provide new insights into exploiting the potential of image-based omics analysis in the field of oral science., Clinical Significance: This review article presents the state of image-based multi-omics analysis in stomatology, aiming to help oral clinicians recognize the utility of combining omics analyses with imaging during diagnosis and treatment, which can improve diagnostic accuracy, shorten times to diagnosis, save medical resources, and reduce disparity in professional knowledge among clinicians., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF