1. Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasisResearch in context
- Author
-
Takahiro Yamada, Shingo Hino, Hideki Iijima, Tomomi Genda, Ryo Aoki, Ryuji Nagata, Kyu-Ho Han, Masato Hirota, Yusuke Kinashi, Hiroyuki Oguchi, Wataru Suda, Yukihiro Furusawa, Yumiko Fujimura, Jun Kunisawa, Masahira Hattori, Michihiro Fukushima, Tatsuya Morita, and Koji Hase
- Subjects
Medicine ,Medicine (General) ,R5-920 - Abstract
Background: The dysbiosis of gut microbiota has been implicated in the pathogenesis of inflammatory bowel diseases; however, the underlying mechanisms have not yet been elucidated. Heavily glycosylated mucin establishes a first-line barrier against pathogens and serves as a niche for microbial growth. Methods: To elucidate relationships among dysbiosis, abnormal mucin utilisation, and microbial metabolic dysfunction, we analysed short-chain fatty acids (SCFAs) and mucin components in stool samples of 40 healthy subjects, 49 ulcerative colitis (UC) patients, and 44 Crohn's disease (CD) patients from Japan. Findings: Levels of n-butyrate were significantly lower in stools of both CD and UC patients than in stools of healthy subjects. Correlation analysis identified seven bacterial species positively correlated with n-butyrate levels; the major n-butyrate producer, Faecalibacterium prausnitzii, was particularly underrepresented in CD patients, but not in UC patients. In UC patients, there were inverse correlations between mucin O-glycan levels and the production of SCFAs, such as n-butyrate, suggesting that mucin O-glycans serve as an endogenous fermentation substrate for n-butyrate production. Indeed, mucin-fed rodents exhibited enhanced n-butyrate production, leading to the expansion of RORgt+Treg cells and IgA-producing cells in colonic lamina propria. Microbial utilisation of mucin-associated O-glycans was significantly reduced in n-butyrate-deficient UC patients. Interpretation: Mucin O-glycans facilitate symbiosynthesis of n-butyrate by gut microbiota. Abnormal mucin utilisation may lead to reduced n-butyrate production in UC patients. Fund: Japan Society for the Promotion of Science, Health Labour Sciences Research Grant, AMED-Crest, AMED, Yakult Foundation, Keio Gijuku Academic Development Funds, The Aashi Grass Foundation, and The Canon Foundation. Keywords: Microbiota, Butyrate, Mucin, Inflammatory bowel disease
- Published
- 2019
- Full Text
- View/download PDF