1. Nonenantioselective environmental behavior of a chiral antiviral pesticide dufulin in aerobic soils.
- Author
-
Zhang W, Zhou X, Ye Q, Cheng X, Zhang S, Yu Z, and Wang W
- Subjects
- Soil chemistry, Benzothiazoles analysis, Pesticides chemistry, Soil Pollutants analysis
- Abstract
Dufulin is a promising chiral antiviral agent, but little is known about its fate in soils. In this study, the fate of dufulin enantiomers in aerobic soils was investigated using radioisotope tracing techniques. The result of the four-compartment model showed no significant differences in dissipation, generation of bound residues (BR) and mineralization between S-dufulin and R-dufulin during incubation. Dufulin dissipated most quickly in cinnamon soils, followed by fluvo-aquic and black soils and the half-lives of dufulin in these soils obtained by the modified model were 4.92-5.23, 32.39-33.32 and 60.80-61.34 d, respectively. After 120 d incubation, the percentage of radioactivity of BR increased to 18.2-38.4 % in the three soils. Dufulin formed most bound residues in the black soil, least in the cinnamon soil, and BRs rapidly formed in the cinnamon soil during the early culture period. In these three soils, the cumulative mineralization of
14 CO2 ranged from 25.0 to 26.7 %, 42.1 to 43.4 % and 33.8 to 34.4 %, respectively, which indicated that the environmental fate of dufulin was primarily influenced by soil characteristics. The study of microbial community structure revealed that the phyla Ascomycota, Proteobacteria and genus Mortierella might be related to the degradation of dufulin. These findings provide a reference for assessing the environmental impact and ecological safety of dufulin application., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF