1. Dynamic functional connectivity in verbal cognitive control and word reading
- Author
-
Kazuki Sakakura, Matthew Brennan, Masaki Sonoda, Takumi Mitsuhashi, Aimee F Luat, Neena I Marupudi, Sandeep Sood, and Eishi Asano
- Subjects
Pediatric epilepsy surgery ,Functional brain mapping ,Dynamic tractography ,Physiological high-frequency oscillation (HFO) ,Executive function ,Language ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350–600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.
- Published
- 2024
- Full Text
- View/download PDF