1. Selenized polysaccharides - Biosynthesis and structural analysis.
- Author
-
Malinowska E, Klimaszewska M, Strączek T, Schneider K, Kapusta C, Podsadni P, Łapienis G, Dawidowski M, Kleps J, Górska S, Pisklak DM, and Turło J
- Subjects
- Amino Acids analysis, Models, Molecular, Monosaccharides analysis, Proteins analysis, Polysaccharides chemistry, Polysaccharides metabolism, Selenium analysis, Selenium chemistry, Selenium metabolism, Shiitake Mushrooms metabolism
- Abstract
The main objective of our research was to analyze the structure of the Se-containing polysaccharides and to examine how the selenium is bound to the polysaccharide molecule. During investigation of the biosynthesis of new immunomodulators, we isolated a selenium (Se)-containing polysaccharide-protein fraction containing proteoglycans of molecular weights of 3.9 × 10
6 Da and 2.6 × 105 Da, composed of glucose or mannose, nearly 8% of protein and 190 μg Se/g dry weight. X-ray absorption spectroscopy (XAS) data analysis in the near edge region (XANES) confirmed that selenium in the Se-polysaccharides structure is present at the -II oxidation state and that Se is organically bound. The simulation analysis in the EXAFS (extended X-ray absorption fine structure) region suggested that selenium is most likely bound by a glycosidic-link in a β-1,3 or α-1,4-glycosidic bond or substituted for oxygen in a pyranosidic ring. Calculations performed with Gaussian 03 software predicted deformations in the polysaccharide structure caused by the incorporation of the selenium atom including change in bond lengths and torsion angles and, as a result, disappearance of hydrogen bonds in the vicinity of the selenium atoms., (Copyright © 2018 Elsevier Ltd. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF