7 results on '"Haid, Mark"'
Search Results
2. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study
- Author
-
Eriksen, Rebeca, Perez, Isabel Garcia, Posma, Joram M., Haid, Mark, Sharma, Sapna, Prehn, Cornelia, Thomas, Louise E., Koivula, Robert W., Bizzotto, Roberto, Mari, Andrea, Giordano, Giuseppe N., Pavo, Imre, Schwenk, Jochen M., De Masi, Federico, Tsirigos, Konstantinos D., Brunak, Søren, Viñuela, Ana, Mahajan, Anubha, McDonald, Timothy J., Kokkola, Tarja, Rutter, Femke, Teare, Harriet, Hansen, Tue H., Fernandez, Juan, Jones, Angus, Jennison, Chris, Walker, Mark, McCarthy, Mark I., Pedersen, Oluf, Ruetten, Hartmut, Forgie, Ian, Bell, Jimmy D., Pearson, Ewan R., Franks, Paul W., Adamski, Jerzy, Holmes, Elaine, and Frost, Gary
- Published
- 2020
- Full Text
- View/download PDF
3. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
- Author
-
Jennison, Christopher, Ehrhardt, Beate, Baum, Patrick, Schoelsch, Corinna, Freijer, Jan, Grempler, Rolf, Graefe-Mody, Ulrike, Hennige, Anita, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinecich, Iryna, Pattou, Francois, Raverdi, Violeta, Caiazzo, Robert, Torres, Fanelly, Verkindt, Helene, Mari, Andrea, Tura, Andrea, Giorgino, Toni, Bizzotto, Roberto, Froguel, Philippe, Bonneford, Amelie, Canouil, Mickael, Dhennin, Veronique, Brorsson, Caroline, Brunak, Soren, De Masi, Federico, Gudmundsdóttir, Valborg, Pedersen, Helle, Banasik, Karina, Thomas, Cecilia, Sackett, Peter, Staerfeldt, Hans-Henrik, Lundgaard, Agnete, Nilsson, Birgitte, Nielsen, Agnes, Mazzoni, Gianluca, Karaderi, Tugce, Rasmussen, Simon, Johansen, Joachim, Allesøe, Rosa, Fritsche, Andreas, Thorand, Barbara, Adamski, Jurek, Grallert, Harald, Haid, Mark, Sharma, Sapna, Troll, Martina, Adam, Jonathan, Ferrer, Jorge, Eriksen, Heather, Frost, Gary, Haussler, Ragna, Hong, Mun-gwan, Schwenk, Jochen, Uhlen, Mathias, Nicolay, Claudia, Pavo, Imre, Steckel-Hamann, Birgit, Thomas, Melissa, Adragni, Kofi, Wu, Han, Hart, Leen't, Roderick, Slieker, van Leeuwen, Nienke, Dekkers, Koen, Frau, Francesca, Gassenhuber, Johann, Jablonka, Bernd, Musholt, Petra, Ruetten, Hartmut, Tillner, Joachim, Baltauss, Tania, Bernard Poenaru, Oana, de Preville, Nathalie, Rodriquez, Marianne, Arumugam, Manimozhiyan, Allin, Kristine, Engelbrechtsen, Line, Hansen, Torben, Hansen, Tue, Forman, Annemette, Jonsson, Anna, Pedersen, Oluf, Dutta, Avirup, Vogt, Josef, Vestergaard, Henrik, Laakso, Markku, Kokkola, Tarja, Kuulasmaa, Teemu, Franks, Paul, Giordano, Nick, Pomares-Millan, Hugo, Fitipaldi, Hugo, Mutie, Pascal, Klintenberg, Maria, Bergstrom, Margit, Groop, Leif, Ridderstrale, Martin, Atabaki Pasdar, Naeimeh, Deshmukh, Harshal, Heggie, Alison, Wake, Dianne, McEvoy, Donna, McVittie, Ian, Walker, Mark, Hattersley, Andrew, Hill, Anita, Jones, Angus, McDonald, Timothy, Perry, Mandy, Nice, Rachel, Hudson, Michelle, Thorne, Claire, Dermitzakis, Emmanouil, Viñuela, Ana, Cabrelli, Louise, Loftus, Heather, Dawed, Adem, Donnelly, Louise, Forgie, Ian, Pearson, Ewan, Palmer, Colin, Brown, Andrew, Koivula, Robert, Wesolowska-Andersen, Agata, Abdalla, Moustafa, McRobert, Nicky, Fernandez, Juan, Jiao, Yunlong, Robertson, Neil, Gough, Stephen, Kaye, Jane, Mourby, Miranda, Mahajan, Anubha, McCarthy, Mark, Shah, Nisha, Teare, Harriet, Holl, Reinhard, Koopman, Anitra, Rutters, Femke, Beulens, Joline, Groeneveld, Lenka, Bell, Jimmy, Thomas, Louise, Whitcher, Brandon, Wilman, Henry R., Parisinos, Constantinos A., Atabaki-Pasdar, Naeimeh, Kelly, Matt, Thomas, E. Louise, Neubauer, Stefan, Hingorani, Aroon D., Patel, Riyaz S., Hemingway, Harry, Franks, Paul W., Bell, Jimmy D., Banerjee, Rajarshi, and Yaghootkar, Hanieh
- Published
- 2019
- Full Text
- View/download PDF
4. Corrigendum to “Endothelial epoxyeicosatrienoic acid release is intact in aldosterone excess” [Atherosclerosis 398 (2024) 118591]
- Author
-
Meng, Yao, Bilyal, Aynur, Chen, Li, Mederos y Schnitzler, Michael, Kocabiyik, Julien, Gudermann, Thomas, Riols, Fabien, Haid, Mark, Marques, Jair G., Horak, Jeannie, Koletzko, Berthold, Sun, Jing, Beuschlein, Felix, Heinrich, Daniel A., Adolf, Christian, Reincke, Martin, and Schneider, Holger
- Published
- 2025
- Full Text
- View/download PDF
5. Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug–exacerbated respiratory disease.
- Author
-
Haimerl, Pascal, Bernhardt, Ulrike, Schindela, Sonja, Henkel, Fiona D.R., Lechner, Antonie, Zissler, Ulrich M., Pastor, Xavier, Thomas, Dominique, Cecil, Alexander, Ge, Yan, Haid, Mark, Prehn, Cornelia, Tokarz, Janina, Heinig, Matthias, Adamski, Jerzy, Schmidt-Weber, Carsten B., Chaker, Adam M., and Esser-von Bieren, Julia
- Abstract
Nonsteroidal anti-inflammatory drug–exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Maternal hyperglycemia induces alterations in hepatic amino acid, glucose and lipid metabolism of neonatal offspring: Multi-omics insights from a diabetic pig model.
- Author
-
Shashikadze, Bachuki, Valla, Libera, Lombardo, Salvo Danilo, Prehn, Cornelia, Haid, Mark, Riols, Fabien, Stöckl, Jan Bernd, Elkhateib, Radwa, Renner, Simone, Rathkolb, Birgit, Menche, Jörg, Hrabĕ de Angelis, Martin, Wolf, Eckhard, Kemter, Elisabeth, and Fröhlich, Thomas
- Abstract
To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs. Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein–protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology. Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways – most prominently those from the Kennedy pathway – were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance. Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers. [Display omitted] • Maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. • Increased hepatic phosphoenolpyruvate carboxykinase and serum free fatty acid levels argue for stimulated gluconeogenesis. • Prominent lipid accumulation in hepatocytes is observed despite downregulation of enzymes involved in lipogenesis. • Reduced lipogenesis in tandem with an increased lipid breakdown may counteract maternally elevated lipid levels. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Endocrinology Meets Metabolomics: Achievements, Pitfalls, and Challenges.
- Author
-
Tokarz, Janina, Haid, Mark, Cecil, Alexander, Prehn, Cornelia, Artati, Anna, Möller, Gabriele, and Adamski, Jerzy
- Subjects
- *
ENDOCRINOLOGY , *METABOLOMICS , *BIOINFORMATICS , *GENOMES , *PHENOTYPES , *DISEASE research - Abstract
The metabolome, although very dynamic, is sufficiently stable to provide specific quantitative traits related to health and disease. Metabolomics requires balanced use of state-of-the-art study design, chemical analytics, biostatistics, and bioinformatics to deliver meaningful answers to contemporary questions in human disease research. The technology is now frequently employed for biomarker discovery and for elucidating the mechanisms underlying endocrine-related diseases. Metabolomics has also enriched genome-wide association studies (GWAS) in this area by providing functional data. The contributions of rare genetic variants to metabolome variance and to the human phenotype have been underestimated until now. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.