1. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration.
- Author
-
Pettersson-Klein, A.T., Izadi, M., Ferreira, D.M.S., Cervenka, I., Correia, J.C., Martinez-Redondo, V., Southern, M., Cameron, M., Kamenecka, T., Agudelo, L.Z., Porsmyr-Palmertz, M., Martens, U., Lundgren, B., Otrocka, M., Jenmalm-Jensen, A., Griffin, P.R., and Ruas, J.L.
- Abstract
Objective The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1α1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1α1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions. Methods We designed a cell-based high-throughput screening system to identify PGC-1α1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1α1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes. Results Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1α1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes. Conclusions We identify compounds that induce PGC-1α1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF