This paper presents the motion and force control problem of rigid-link electrically driven cooperative mobile manipulators handling a rigid object. Although, the motion/force control problem of cooperative mobile manipulators has been enthusiastically studied. But there is little research on the motion/force control of electrically driven cooperative mobile manipulators. Due to the inclusion of the actuator dynamics with the manipulator's dynamics, the controller exhibits some important characteristics. For the electromechanical system, we have designed a novel controller at the dynamic level as well as at the actuator level. In the proposed control scheme, at the dynamic level, uncertain non-linear mechanical dynamics is approximated with a hybrid controller containing model-based control scheme combined with model-free neural network based control scheme together with an adaptive bound. The adaptive bound is used to suppress the effects of external disturbances, friction terms, and reconstruction error of the neural network. At the actuator level, for the approximation of the unknown electrical dynamics, the model-free neural network is utilized. The developed control scheme provides that the position tracking errors, as well as the internal force, converge to the desired levels. Additionally, direct current motors are also controlled in such a way that the desired currents and torques can be attained. In order to make the overall system to be asymptotically stable, online learning of the weights and the parameter adaptation of the parameters is utilized in the Lyapunov function. The superiority of the developed control method is carried out with the numerical simulation results and its superior robustness is shown in a comparative manner. • Motion/force control of electrically driven multiple mobile manipulators is addressed. • The controller is designed at the dynamical level as well as at the actuator level. • At the dynamic level, hybrid controller is proposed. • At the actuator level, model free controller is proposed. • The system is shown to be stable utilizing Lyapunov approach. • Simulation studies are performed to show the effectiveness in a comparative manner. [ABSTRACT FROM AUTHOR]