1. A systematic literature review on phishing website detection techniques.
- Author
-
Safi, Asadullah and Singh, Satwinder
- Subjects
DEEP learning ,PHISHING ,CONVOLUTIONAL neural networks ,FRAUD ,DOWNLOADING - Abstract
Phishing is a fraud attempt in which an attacker acts as a trusted person or entity to obtain sensitive information from an internet user. In this Systematic Literature Survey (SLR), different phishing detection approaches, namely Lists Based, Visual Similarity, Heuristic, Machine Learning, and Deep Learning based techniques, are studied and compared. For this purpose, several algorithms, data sets, and techniques for phishing website detection are revealed with the proposed research questions. A systematic Literature survey was conducted on 80 scientific papers published in the last five years in research journals, conferences, leading workshops, the thesis of researchers, book chapters, and from high-rank websites. The work carried out in this study is an update in the previous systematic literature surveys with more focus on the latest trends in phishing detection techniques. This study enhances readers' understanding of different types of phishing website detection techniques, the data sets used, and the comparative performance of algorithms used. Machine Learning techniques have been applied the most, i.e., 57 as per studies, according to the SLR. In addition, the survey revealed that while gathering the data sets, researchers primarily accessed two sources: 53 studies accessed the PhishTank website (53 for the phishing data set) and 29 studies used Alexa's website for downloading legitimate data sets. Also, as per the literature survey, most studies used Machine Learning techniques; 31 used Random Forest Classifier. Finally, as per different studies, Convolution Neural Network (CNN) achieved the highest Accuracy, 99.98%, for detecting phishing websites. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF