Dai-Viet N. Vo, Doan Pham Minh, Tan Ji Siang, Xuan-Huynh Pham, Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE), Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Universiti Teknologi Malaysia (UTM), and Nguyen Tat Thanh University [Vietnam] (NTTU)
International audience; Tri-reforming of methane (TRM) allows the production of syngas with a low environmental impact, an optimal energetic consumption, and a modular H2/CO molar ratio. However, despite a large number of publications devoted to TRM reaction, this process is still in its infancy and faces technical issues due to the catalyst deactivation by the formation of solid carbon, thermal sintering, vapor-solid reactions, and poisoning. Moreover, TRM reaction is also highly dependent on the operational conditions. This article provides a critical analysis of the last achievements on the TRM reaction. First, the thermodynamic, kinetic and mechanism aspects are presented and commented. Then, the impact of the operational conditions is analyzed. Finally, the main reasons of catalyst deactivation and the associated methods for catalyst regeneration are discussed. In parallel, catalytic efficiency is tentatively linked to physico-chemical properties of the catalyst, and recommendations are proposed for the future work on TRM process.