1. A distributed and incremental algorithm for large-scale graph clustering
- Author
-
Wissem Inoubli, Sabeur Aridhi, Haithem Mezni, Mondher Maddouri, Engelbert Mephu Nguifo, Université de Tunis El Manar (UTM), Computational Algorithms for Protein Structures and Interactions (CAPSID), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Strategies for Modelling and ARtificial inTelligence Laboratory (SMART-LAB), Université de Tunis, University of Jeddah, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), This work was partially supported by the CNRS-INRIA/FAPs project 'TempoGraphs' (PRC2243)., Tallinn University, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Jendouba (UJ), Taibah University, Université Clermont Auvergne (UCA), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), and Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Big Data ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Community detection ,Computer Networks and Communications ,Graph processing ,Outliers detection ,Graph processing Structural graph clustering Big Graph Analysis Community detection Outliers detection hubs detection ,hubs detection ,Distributed computing ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Structural graph clustering ,Graph clustering ,Big graph ,Hardware and Architecture ,Distributed graph clustering ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,SCAN ,Software ,Big Graph Analysis - Abstract
International audience; Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.
- Published
- 2022
- Full Text
- View/download PDF