Elena F. Bazarkina, Marie-Camille Caumon, Laurent Truche, Michel Cathelineau, Eleonora Carocci, Ludwig-Maximilians-Universität München (LMU), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Russian Academy of Sciences [Moscow] (RAS), ANR-14-EMIN-0001,NewOreS,Development of New models for the genesis of Rare Metal (W, Nb, Ta, Li) Ore deposits from the European Variscan Belt and valorization of low grade and fine grained ore and mine tailings(2014), ANR-10-LABX-0021,RESSOURCES21,Strategic metal resources of the 21st century(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Matériaux, Rayonnements, Structure (MRS), Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
International audience; Tungsten (VI) speciation in hydrothermal solutions is investigated through in-situ Raman spectroscopy coupled with the fused silica glass capillary technique at temperatures up to 400 °C. The effect of temperature, pH, chlorinity and carbonate speciation are evaluated. At all investigated temperatures, the tungstate ion WO4 2-(927 cm-1) is the only W species in solution at pH > 10. At a given pH, the presence of dissolved carbonates and chloride does not affect the tungsten speciation. Tungsten polymers remain stable up to 400 °C under acidic to circum-neutral pH conditions and total tungsten concentration above 0.01 mol kgH2O-1. Among the three observed polymers, namely [W7O24] 6-(paratungstate-A, ~ 960 cm-1), [W10O32] 4-(tungstate-Y, ~ 970 cm-1), and α-[H2W12O40] 6-(α-metatungstate, ~ 990 cm-1), only the hepta-and dodeca-tungstate are stable at elevated temperature. Combined with revised literature data, these results allow the thermodynamic stability constants of these W polymers to be constrained, enabling quantitative predictions of their relative abundance at temperatures up to 300 °C. These predictions suggest that W polymerization occurs under hydrothermal conditions even at low W concentration (down to 10-5 mol•kgH2O-1) under acidic conditions. These observations imply that the currently available geochemical models on W transport and deposition in deep and hot geological fluids need to be revised.