5 results on '"Grégory Vert"'
Search Results
2. Plant Cell Signaling: SUMO Is under the Influence of Steroids and Salt
- Author
-
Grégory Vert, Signalisation Cellulaire et Ubiquitination, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,Plant growth ,medicine.medical_treatment ,fungi ,SUMO protein ,food and beverages ,Salt (chemistry) ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Plant cell ,General Biochemistry, Genetics and Molecular Biology ,Cell biology ,Salinity ,03 medical and health sciences ,Steroid hormone ,030104 developmental biology ,0302 clinical medicine ,chemistry ,medicine ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Signal transduction ,General Agricultural and Biological Sciences ,030217 neurology & neurosurgery - Abstract
International audience; How do plants reduce growth when facing high salinity ? A new study provides insight into how salt stress impinges on the plant steroid hormone signaling pathway to dampen plant growth. Plants are growing in a constantly changing environment and, unlike most animals, cannot run away from adverse conditions. Instead, plants adjust their growth and development using an intricate network of internal signals to ensure completion of their life cycle. Among these, brassinosteroids (BRs), the polyhydroxylated steroid hormones of plants, have been the focus a lot of attention during the past two decades. The main actors driving the perception and signal transduction of BRs in plant cells have now been identified in the model plant Arabidopsis, mostly through intensive genetic and biochemical approaches. A complex cascade of phospho/dephosphorylation events conveys the BR signal from the cell surface to the nucleus where it culminates in the regulation of gene expression by the BRASSINAZOLE RESISTANT (BZR) family of transcription factors [1]. BZR proteins are absolutely essential to BR signaling and more generally to plant growth and development [2]. Their precise regulation in time and space is therefore central and at the node of many pathways ultimately impacting on plant growth. The best characterized regulatory mechanism targeting BZR proteins is a BR-regulated phospho/dephosphorylation coupled to a ubiquitin-mediated degradation by the 26S proteasome that has been brought to light with BZR1 and BZR2, the founding members of the BZR family. In the resting state, plant cells phosphorylate BZRs using the GSK3/SHAGGY kinase BIN2 [1]. This results in the cytosolic localization and destabilization of BZRs, thus shutting down BR genomic responses. When plant cells perceive BRs, BIN2 is inactivated and degraded [3, 4], allowing the dephosphorylation of BZRs by PP2A phosphatases [5]. Dephosphorylated BZRs in turn accumulate in the nucleus where they bind to target promoters to fire BR genomic responses [1]. Recently, additional BR-dependent and-independent mechanisms directly controlling the activity of BZR proteins
- Published
- 2020
- Full Text
- View/download PDF
3. Brassinosteroid signaling and BRI1 dynamics went underground
- Author
-
Grégory Vert, Yvon Jaillais, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Signalisation Cellulaire et Ubiquitination chez les plantes (UBINET), Département Biologie Cellulaire (BioCell), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), European Research Council [3363360-APPL], Marie Curie Action [PCIG-GA-2011-303601, PCIG-GA-2012-334021], Agence Nationale de la Recherche [ANR-13-JSV2-0004-01], Kimberley C Snowden, and Dirk Inze
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,Meristem ,Cell ,Arabidopsis ,Context (language use) ,Plant Science ,Plant Roots ,Article ,Cell membrane ,03 medical and health sciences ,chemistry.chemical_compound ,Plant Growth Regulators ,Brassinosteroids ,Botany ,medicine ,Brassinosteroid ,biology ,Arabidopsis Proteins ,fungi ,biology.organism_classification ,Cell biology ,030104 developmental biology ,medicine.anatomical_structure ,chemistry ,Signal transduction ,Protein Kinases ,Signal Transduction ,Hormone - Abstract
Brassinosteroids (BRs) are a group of steroid molecules perceived at the cell surface and that act as plant hormones. Since their discovery as crucial growth substances, BRs were mainly studied for their action in above ground organs and the BR signaling pathway was largely uncovered in the context of hypocotyl elongation. However, for the past two years, most of the exciting findings on BR signaling have been made using roots as a model. The Arabidopsis root is a system of choice for cell biology and allowed detailed characterization of BR perception at the cell membrane. In addition, a series of elegant articles dissected how BRs act in tissue specific manners to control root growth and development.
- Published
- 2016
- Full Text
- View/download PDF
4. Regulation of Iron Uptake by IRT1: Endocytosis Pulls the Trigger
- Author
-
Enric Zelazny, Grégory Vert, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Signalisation Cellulaire et Ubiquitination chez les plantes (UBINET), Département Biologie Cellulaire (BioCell), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,[SDV]Life Sciences [q-bio] ,Iron ,Arabidopsis ,chemistry.chemical_element ,Endosomes ,Plant Science ,Zinc ,Manganese ,Biology ,Endocytosis ,01 natural sciences ,03 medical and health sciences ,Cation Transport Proteins ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,Cadmium ,Arabidopsis Proteins ,Ubiquitin ,Transporter ,Cell biology ,chemistry ,Biochemistry ,Cobalt ,Intracellular ,Homeostasis ,010606 plant biology & botany - Abstract
The past two decades of research on plant iron nutrition have completed the casting of the major transporters involved in iron uptake from the soil, long-distance transport, and intracellular distribution. Among these transporters, most of the attention was given to the root iron transporter IRT1, which plays a critical role in iron uptake from the soil and mediates transport of other non-iron metals (zinc, manganese, cobalt, cadmium) under iron-limiting conditions. As such, IRT1 is the primary determinant of iron and heavy metal homeostasis in plants.
- Published
- 2015
- Full Text
- View/download PDF
5. Iron transport in plants: better be safe than sorry
- Author
-
Sébastien Thomine, Grégory Vert, Institut des sciences du végétal (ISV), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Plant Science ,Vacuole ,Biology ,Mitochondrion ,Photosynthesis ,01 natural sciences ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Plastids ,030304 developmental biology ,0303 health sciences ,Ion Transport ,food and beverages ,Oryza ,Plants ,Iron transport ,Plant cell ,Mitochondria ,Cell biology ,Chloroplast ,Metals ,Vacuoles ,Intracellular ,Function (biology) ,010606 plant biology & botany - Abstract
International audience; Iron is essential for plant cell function and more specifically for photosynthesis. Plants have evolved highly efficient systems to take up iron from the soil. However, activating iron uptake is a double jeopardy: not only iron itself is toxic but iron uptake systems are poorly selective and allow the entry of other potentially toxic metals. Plants therefore tightly control iron uptake at the transcriptional and post-translational level and have evolved mechanisms to cope with the concomitant entry of toxic metals. In plant cells, iron has to be distributed to chloroplasts and mitochondria or may be stored safely in vacuole. Distinct transcriptional networks regulating uptake and intracellular distribution are being uncovered, while iron sensing mechanisms remain elusive.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.