Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in trauma patients. The primary focus of treating TBI is to prevent additional injury to the damaged brain tissue, known as secondary brain injury. This treatment can include treating the body’s inflammatory response. Despite promise in animal models, anti-inflammatory therapy has failed to improve outcomes in human patients, suggesting a more targeted and precise approach may be needed. There is a bidirectional axis between the intestine and the brain that contributes to this inflammation in acute and chronic injury. The mechanisms for this interaction are not completely understood, but there is evidence that neural, inflammatory, endocrine, and microbiome signals all participate in this process. Therapies that target the intestine as a source of inflammation have potential to lessen secondary brain injury and improve outcomes in TBI patients, but to develop these treatments we need to better understand the mechanisms behind this intestinal inflammatory response.