6 results on '"Jiaming Gao"'
Search Results
2. Synthesis of panaxadiol thiadiazole derivatives and study on its potential cell cycle arrest
- Author
-
Rongke Dai, Tao Li, Shengnan Xiao, Yu Chen, Jiaming Gao, Guangyue Su, and Yuqing Zhao
- Subjects
Inorganic Chemistry ,Organic Chemistry ,Spectroscopy ,Analytical Chemistry - Published
- 2022
- Full Text
- View/download PDF
3. Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation
- Author
-
Xuehua Ruan, Gaohong He, Jiaming Gao, Wu Xiao, Xiaobin Jiang, Fei Guo, Dongsheng Li, and Rui Ding
- Subjects
Membrane ,Template ,Materials science ,Composite number ,Barrer ,Filtration and Separation ,Gas separation ,Permeation ,Composite material ,Selectivity ,Analytical Chemistry ,Nanomaterials - Abstract
Two-dimensional nanomaterials have the characteristics of high aspect ratio and high space utilization, which has huge potential advantages in gas separation. In this work, g-C3N4 two-dimensional nanosheets with sieving pore structure were selected as templates and combined with ZIF-90 to construct a 0-dimensional/2-dimensional composite material ZIF-90@C3N4 (ZCN). The complete two-dimensional g-C3N4 nanosheets were stripped under acid etching conditions at 25 °C. ZIF-90 was distributed in an orderly manner on the two-dimensional nanosheets, and the nanosheets were spread out due to the growth of ZIF-90 to provide more free volume. The gas permeation experiment proved that the ZCN has a better CO2/N2 separation performance. The ZCN/Pebax mixed matrix membrane (MMM) with the optimized 8.0 wt% ZCN loading showed an improved CO2 permeability of 110.5 Barrer and a CO2 /N2 selectivity of 84.4, surpassing the Robeson upper bound (2008). The results demonstrated that the designed composite filler with 2D nanosheets is an effective strategy to enhance gas separation performance of MMMs and verified the application potential in gas purification industry.
- Published
- 2022
- Full Text
- View/download PDF
4. GDF11 Rejuvenates Neural Stem Cells Via Smad2/3-PI3K-AKT-mTOR and Reverses Aged-Dependent Cognitive Decline
- Author
-
Jie Liu, Weihong Ge, Enfeng Zhao, Xianjun Liu, Qingwei Ruan, Qi Gu, Xiaoqi Zhu, Junyan Shen, Wenqiang Quan, Zhuowei Yu, Hui Zhang, Lei Fu, Haitao Shen, Hao Wang, Jiaming Gao, Kunshan Zhang, Quan Lin, Xiaojing Liu, Hailiang Liu, Binglian Qin, Yi Eve Sun, and Dong Li
- Subjects
medicine.medical_specialty ,Endocrinology ,Angiogenesis ,Parabiosis ,Internal medicine ,Neurogenesis ,GDF11 ,medicine ,Cognitive decline ,Biology ,Protein kinase B ,Neural stem cell ,PI3K/AKT/mTOR pathway - Abstract
Whether GDF11 is a systemic factor from young animals’circulation that mediates the rejuvenation process in old animals during heterochronic parabiosis has been debated. We carried out transcriptomic analyses of young versus old monkey and human blood samples demonstrating negative correlations between GDF11 expression and old age, which is further confirmed by quantitative RT-PCR of GDF11 mRNA from more than 400 young and old human blood samples. Reduced GDF11 expression is also correlated with age-dependent cognitive decline. Tail vein injection of recombinant mature GDF11 into aged mice led to increased numbers of cerebral blood vessels and cerebral blood flow, enhanced neurogenesis and spatial learning. Objective and systemic transcriptomic analyses of GDF11-treated brains revealed and subsequently confirmed through biological assays, that rGDF11 regulated angiogenesis, neurogenesis, cell cycle, energy metabolism, clearance of senescent cells, as well as increased telomere length and GDF11 gene expression in neural stem cells via the Smad2/3-PI3K-AKT-mTOR pathway.
- Published
- 2020
- Full Text
- View/download PDF
5. Surface wind pressure tests on buildings with various non-uniformity morphological parameters
- Author
-
Jiaming Gao, Jing Liu, and Biao Li
- Subjects
Engineering ,Drag coefficient ,Wind gradient ,Renewable Energy, Sustainability and the Environment ,business.industry ,Mechanical Engineering ,Mechanics ,Wind direction ,Roughness length ,Wind profile power law ,Log wind profile ,Drag ,Geotechnical engineering ,business ,Civil and Structural Engineering ,Wind tunnel - Abstract
The wind environments in real urban areas, which consist of various significantly non-uniform buildings, are completely different from those in regular building arrays or homogeneous underlying surface areas. Through boundary layer wind tunnel experimental studies, the present work aimed to investigate the possible effects of non-uniformity morphological parameters of buildings on the drag coefficient, with consideration given to the non-uniformity of the frontal area, density, shape, and layout of buildings. And a novel non-intrusive approach to drag measurement, based on wind pressure tests performed on three single buildings, was developed and compared with the direct measurement method. The experimental analyses indicate that among different cases, in general, the variation tendency of the drag coefficient of individual blocks positioned along a wind direction over a large planar area was approximated as an attenuation curve. Moreover, the drag coefficient results from the wind pressure tests vary by 10–20% from those based on direct measurements. Furthermore, when the layout was a diagonal-square network, which is considered for buildings that have better ventilation conditions, it was observed that the wind pressure difference coefficient of those pressure modules would increase. There are clear differences between an H-shaped building and a rectangular one, such as their distributions of the wind pressure difference coefficient and the fact that the H-shaped structure induces flow more intensely. In addition, the effect of changes in terrain roughness on the distribution of the surface wind pressure difference coefficient is not significant.
- Published
- 2015
- Full Text
- View/download PDF
6. Lab-on-a-chip for high frequency acoustic characterization
- Author
-
Xingzhong Zhao, Dorothee Callens, Jiaming Gao, Shishang Guo, Shengxiang Wang, Julien Carlier, Bertrand Nongaillard, Pierre Campistron, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN (MAMINA - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Materials science ,Silicon ,Acoustics ,Microfluidics ,chemistry.chemical_element ,02 engineering and technology ,law.invention ,[SPI]Engineering Sciences [physics] ,03 medical and health sciences ,law ,Materials Chemistry ,Wafer ,Electrical and Electronic Engineering ,Instrumentation ,030304 developmental biology ,0303 health sciences ,Microchannel ,Metals and Alloys ,Acoustic wave ,Lab-on-a-chip ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Computer Science::Other ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ultra high frequency ,chemistry ,Ultrasonic sensor ,0210 nano-technology - Abstract
This paper presents an acoustofluidics platform for elastic characterization of biological samples using ultra high frequency (∼1 GHz) ultrasonic bulk acoustic waves (BAW). The propagation of bulk acoustic waves in a plane parallel to the surface of a silicon wafer was controlled using 45° acoustic mirrors, thus leading to the development of real time biosensing applications in a microchannel fabricated using ICP technology. To validate the design and technology of the silicon and PDMS-based platform, the propagation of bulk acoustic waves through the microfluidic channel was studied. This lab-on-a-chip platform was used to characterize different concentrations of chemical solutions in the microfluidic channel and detect latex particles passing through the channel.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.