1. Dispersal traits as indicators of vegetation dynamics in long-term old-field succession
- Author
-
Stefan Klotz, Alexander Harpke, Jutta Stadler, and Sonja Knapp
- Subjects
0106 biological sciences ,Secondary succession ,Ecology ,010604 marine biology & hydrobiology ,Seed dispersal ,food and beverages ,General Decision Sciences ,Plant community ,Ecological succession ,Biology ,010603 evolutionary biology ,01 natural sciences ,Abundance (ecology) ,Biological dispersal ,Species richness ,Relative species abundance ,Ecology, Evolution, Behavior and Systematics - Abstract
Succession is a key ecological process that supports our understanding of community assembly and biotic interactions. Dispersal potential and dispersal strategies, such as wind- or animal-dispersal, have been assumed to be highly relevant for the success of plant species during succession. However, research yielded varying results on changes in dispersal modes between successional stages. Here, we test the hypotheses that (a) vascular plant species that use a number of dispersal modes dominate in early stages of succession while species specialized on one/few dispersal modes increase in abundance towards later stages of succession; (b) species well adapted to wind-dispersal (anemochory) will peak in abundance in early successional stages and (c) species well adapted to adhesive dispersal (epizoochory) will increase with proceeding succession. We test these hypotheses in four sites within agriculturally dominated landscapes in Germany. Agricultural use in these sites was abandoned 20–28 years ago, leaving them to secondary succession. Sites have been monitored for plant biodiversity ever since. We analyze changes in plant species richness and abundance, number of dispersal modes and two ranking indices for wind- and adhesive dispersal by applying generalized linear mixed-effect models. We used both abundance-weighted and unweighted dispersal traits in order to gain a comprehensive picture of successional developments. Hypothesis (a) was supported by unweighted but not abundance-weighted data. Anemochory showed no consistent changes across sites. In contrast, epizoochory (especially when not weighted by abundance) turned out to be an indicator of the transition from early to mid-successional stages. It increased for the first 9–16 years of succession but declined afterwards. Species richness showed an opposing pattern, while species abundance increased asymptotically. We suggest that plant-animal interactions play a key role in mediating these processes: By importing seeds of highly competitive plant species, animals are likely to promote the increasing abundance of a few dominant, highly epizoochorous species. These species outcompete weak competitors and species richness decreases. However, animals should as well promote the subsequent increase of species richness by disturbing the sites and creating small open patches. These patches are colonized by weaker competitors that are not necessarily dispersed by animals. The changes in the presence of epizoochorous species indicate the importance of plant traits and related plant–animal interactions in the succession of plant communities.
- Published
- 2016