1. Towards generalizable predictions for G protein-coupled receptor variant expression
- Author
-
Charles P. Kuntz, Hope Woods, Andrew G. McKee, Nathan B. Zelt, Jeffrey L. Mendenhall, Jens Meiler, and Jonathan P. Schlebach
- Subjects
Rhodopsin ,Mutagenesis ,Potassium Channels, Voltage-Gated ,KCNQ1 Potassium Channel ,Mutation ,Biophysics - Abstract
Missense mutations that compromise the plasma membrane expression (PME) of integral membrane proteins are the root cause of numerous genetic diseases. Differentiation of this class of mutations from those that specifically modify the activity of the folded protein has proven useful for the development and targeting of precision therapeutics. Nevertheless, it remains challenging to predict the effects of mutations on the stability and/ or expression of membrane proteins. In this work, we utilize deep mutational scanning data to train a series of artificial neural networks to predict the PME of transmembrane domain variants of G protein-coupled receptors from structural and/ or evolutionary features. We show that our best-performing network, which we term the PME predictor, can recapitulate mutagenic trends within rhodopsin and can differentiate pathogenic transmembrane domain variants that cause it to misfold from those that compromise its signaling. This network also generates statistically significant predictions for the relative PME of transmembrane domain variants for another class A G protein-coupled receptor (β
- Published
- 2022
- Full Text
- View/download PDF