Mahdis Amiri, Indra Prakash, Binh Thai Pham, Hiep Van Le, Luan Thanh Nguyen, Huu Duy Nguyen, Quynh Duy Bui, Phan Trong Trinh, Chinh Luu, Romulus Costache, and Tran Van Phong
Recently, floods are occurring more frequently every year around the world due to increased anthropogenic activities and climate change. There is a need to develop accurate models for flood susceptibility prediction and mapping, which can be helpful in developing more efficient flood management plans. In this study, the Partial Decision Tree (PART) classifier and the AdaBoost, Bagging, Dagging, and Random Subspace ensembles learning techniques were combined to develop novel GIS-based ensemble computational models (ABPART, BPART, DPART and RSSPART) for flood susceptibility mapping in the Quang Binh Province, Vietnam. In total, 351 flood locations were used in the model study. This data was divided into a 70:30 ratio for model training (70% ≅ 255 locations) and (30% ≅ 96 locations) for model validation. Ten flood influencing factors, namely elevation, slope, curvature, flow direction, flow accumulation, river density, distance from river, rainfall, land-use, and geology, were used for the development of models. The OneR feature selection method was used to select and prioritize important factors for the spatial modeling. The results revealed that land-use, geology, and slope are the most important conditioning factors in the occurrence of floods in the study area. Standard statistical methods, including the ROC curve (AUC), were used for the performance evaluation of models. Results indicated that the performance of all models was good (AUC > 0.9) and RSSPART (AUC = 0.959) outperformed the others. Thus, the RSSPART model can be used for accurately predicting and mapping flood susceptibility.