1. Pieri rules for Schur functions in superspace
- Author
-
Luc Lapointe and Miles Eli Jones
- Subjects
Pure mathematics ,Monomial ,Key polynomials ,Overline ,General Computer Science ,0102 computer and information sciences ,Superspace ,01 natural sciences ,Schur functions ,Theoretical Computer Science ,Combinatorics ,Macdonald polynomials ,Mathematics::Quantum Algebra ,FOS: Mathematics ,05E05 ,Mathematics - Combinatorics ,Discrete Mathematics and Combinatorics ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,Mathematics::Combinatorics ,Mathematics::Complex Variables ,010102 general mathematics ,Cauchy distribution ,Dual (category theory) ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Combinatorics (math.CO) ,symmetric functions in superspace - Abstract
The Schur functions in superspace $s_\Lambda$ and $\overline{s}_\Lambda$ are the limits $q=t= 0$ and $q=t=\infty$ respectively of the Macdonald polynomials in superspace. We present the elementary properties of the bases $s_\Lambda$ and $\overline{s}_\Lambda$ (which happen to be essentially dual) such as Pieri rules, dualities, monomial expansions, tableaux generating functions, and Cauchy identities., Les fonctions de Schur dans le superespace $s_\Lambda$ et $\overline{s}_\Lambda$ sont les limites $q=t= 0$ et $q=t=\infty$ respectivement des polynômes de Macdonald dans le superespace. Nous présentons les propriétés élémentaires des bases $s_\Lambda$ et $\overline{s}_\Lambda$ (qui sont essentiellement duales l'une de l'autre) tels que les règles de Pieri, la dualité, le développement en fonctions monomiales, les fonctions génératrices de tableaux et les identités de Cauchy.
- Published
- 2017
- Full Text
- View/download PDF