1. Recent studies on Sobolev mappings
- Author
-
Carlo Sbordone, Luigi D'Onofrio, Roberta Schiattarella, D'Onofrio, Luigi, Sbordone, Carlo, and Schiattarella, Roberta
- Subjects
010101 applied mathematics ,Sobolev space ,Combinatorics ,Applied Mathematics ,010102 general mathematics ,Degenerate energy levels ,0101 mathematics ,U-1 ,01 natural sciences ,Unit disk ,Analysis ,Homeomorphism ,Mathematics - Abstract
A homeomorphism U of the unit disk D ⊂ R 2 , U = ( u 1 , u 2 ) : D ⟶ onto D is a quasiharmonic map, if u i ∈ W l o c 1 , 1 , i = 1 , 2 are solutions to the system (0.1) { div B ( y ) ∇ u 1 = 0 a.e. in D div B ( y ) ∇ u 2 = 0 a.e. in D for a symmetric degenerate elliptic conductivity B = B ( y ) i.e. (0.2) ∣ ξ ∣ 2 H ( y ) ≤ 〈 B ( y ) ξ , ξ 〉 ≤ H ( y ) ∣ ξ ∣ 2 a.e. in y ∈ D ∀ ξ ∈ R 2 where H : D ⟶ onto [ 1 , ∞ [ is measurable. A sufficient condition that the Sobolev homeomorphism U ∈ W l o c 1 , 1 is a quasiharmonic map is that U − 1 ∈ W loc 1 , 1 . This condition is not necessary because we construct a quasiharmonic map U such that U − 1 ∈ BV ∖ W loc 1 , 1 (see Theorem 1.1 ).
- Published
- 2017
- Full Text
- View/download PDF