1. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation
- Author
-
Adekunle T. Bademosi, Marianna Decet, Sabine Kuenen, Carles Calatayud, Jef Swerts, Sandra F. Gallego, Nils Schoovaerts, Spyridoula Karamanou, Nikolaos Louros, Ella Martin, Jean-Baptiste Sibarita, Katlijn Vints, Natalia V. Gounko, Frédéric A. Meunier, Anastassios Economou, Wim Versées, Frederic Rousseau, Joost Schymkowitz, Sandra-F. Soukup, Patrik Verstreken, Structural Biology Brussels, Department of Bio-engineering Sciences, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Parkinson disease ,Ca(2+) influx ,General Neuroscience ,synaptic autophagy ,endophilinA ,neuronal activity - Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival. ispartof: NEURON vol:111 issue:9 pages:1402-+ ispartof: location:United States status: published
- Published
- 2023
- Full Text
- View/download PDF