1. Normal forms of hyperbolic logarithmic transseries
- Author
-
D. Peran, M. Resman, J.P. Rolin, T. Servi, Department of Mathematics [Zagreb], Faculty of Science [Zagreb], University of Zagreb-University of Zagreb, Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Servi, Tamara
- Subjects
Applied Mathematics ,Mathematics::History and Overview ,FOS: Mathematics ,fixed point theory ,formal normal forms ,hyperbolic fixed point ,Koenigs sequence ,linearization ,logarithmic transseries ,[MATH] Mathematics [math] ,Dynamical Systems (math.DS) ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,34C20, 37C25, 47H10, 39B12, 46A19, 26A12, 12J15 ,Analysis - Abstract
We find the normal forms of hyperbolic logarithmic transseries with respect to parabolic logarithmic normalizing changes of variables. We provide a necessary and sufficient condition on such transseries for the normal form to be linear. The normalizing transformations are obtained via fixed point theorems, and are given algorithmically, as limits of Picard sequences in appropriate topologies., Comment: 33 pages, 0 figures
- Published
- 2023
- Full Text
- View/download PDF